World Library  
Flag as Inappropriate
Email this Article

Virtual image

Article Id: WHEBN0000953369
Reproduction Date:

Title: Virtual image  
Author: World Heritage Encyclopedia
Language: English
Subject: Magnification, Plane mirror, Optical microscope, Lens (optics), Optics
Collection: Optics
Publisher: World Heritage Encyclopedia

Virtual image

Top: The formation of a virtual image using a diverging lens. Bottom: The formation of a virtual image using a convex mirror. In both diagrams, f  is the focal point, O  is the object and I  is the image, shown in grey. Solid blue lines indicate light rays. It can be seen that the light rays appear to emanate from the virtual image but do not actually exist at the position of the virtual image. Thus an image cannot be seen by placing a screen at the position of the virtual image.

In optics, a virtual image is an image formed when the outgoing rays from a point on an object always diverge. The image appears to be located at the point of apparent divergence. Because the rays never really converge, a virtual image cannot be projected onto a screen. In diagrams of optical systems, virtual rays are conventionally represented by dotted lines. Virtual images are located by tracing the real rays that emerge from an optical device (lens, mirror, or some combination) backward to a perceived point of origin.

In contrast, a real image is one that is formed when the outgoing rays from a point converge at a real location. Real images can be projected onto a diffuse reflecting screen, but a screen is not necessary for the image to form.[1]

  • A plane mirror forms a virtual image positioned behind the mirror. Although the rays of light seem to come from behind the mirror, light from the source only exists in front of the mirror. The image exists in a space that is not real in a sense. The image in a plane mirror is not magnified (that is, the image is the same size as the object) and appears to be as far behind the mirror as the object is in front of the mirror.
  • Whenever we look through a diverging lens (one that is thicker at the edges than the middle) or into a convex mirror, we see a virtual image. Such an image is reduced in size when compared to the original object. A converging lens (one that is thicker in the middle than at the edges) or a concave mirror is also capable of producing a virtual image if the object is within the focal length. Such an image will be magnified. In contrast, an object placed in front of a converging lens or concave mirror at a position beyond the focal length produces a real image. Such an image may be magnified or reduced depending on the position of the object.

See also


  1. ^ Knight, Randall D. (2002). Five Easy Lessons: Strategies for successful physics teaching. Addison Wesley. pp. 276–277. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.