World Library  
Flag as Inappropriate
Email this Article

Spoke–hub distribution paradigm

Article Id: WHEBN0000285734
Reproduction Date:

Title: Spoke–hub distribution paradigm  
Author: World Heritage Encyclopedia
Language: English
Publisher: World Heritage Encyclopedia

Spoke–hub distribution paradigm

Hub and spoke airline route structures. Los Angeles and Denver are used as hubs.

The spoke-hub distribution paradigm (or model or network) is a system of connections arranged like a wire wheel, in which all traffic moves along spokes connected to the hub at the center. The model is commonly used in industry, in particular in transport, telecommunications and freight, as well as in distributed computing, where it is known as a star network.


  • Analysis of the model 1
    • Benefits 1.1
    • Drawbacks 1.2
  • Commercial aviation 2
  • Transportation 3
  • Industrial distribution 4
  • East Asian relations 5
  • See also 6
  • References 7

Analysis of the model

The hub-and-spoke model is most frequently compared to the point-to-point transit model.


  • For a network of n nodes, only n - 1 routes are necessary to connect all nodes; that is, the upper bound is n - 1, and the complexity is O(n). This compares favorably to the \frac{n(n-1)}{2} routes, or O(n2), that would be required to connect each node to every other node in a point-to-point network. For example, in a system with 10 destinations, the spoke-hub system requires only 9 routes to connect all destinations, while a true point-to-point system would require 45 routes.
  • The small number of routes may lead to more efficient use of transportation resources. For example, aircraft are more likely to fly at full capacity, and can often fly routes more than once a day.
  • Complicated operations, such as package sorting and accounting, can be carried out at the hub, rather than at every node.
  • Spokes are simple, and new ones can be created easily.


  • Because the model is centralized, day-to-day operations may be relatively inflexible. Changes at the hub, or even in a single route, could have unexpected consequences throughout the network. It may be difficult or impossible to handle occasional periods of high demand between two spokes.
  • Route scheduling is complicated for the network operator. Scarce resources must be used carefully to avoid starving the hub. Careful traffic analysis and precise timing are required to keep the hub operating efficiently.
  • The hub constitutes a bottleneck or single point of failure in the network. Total cargo capacity of the network is limited by the hub's capacity. Delays at the hub (caused, for example, by bad weather conditions) can result in delays throughout the network. Delays at a spoke (from mechanical problems with an airplane, for example) can also affect the network.
  • Cargo must pass through the hub before reaching its destination, requiring longer journeys than direct point-to-point trips. This trade-off may be desirable for freight, which can benefit from sorting and consolidating operations at the hub, but not for time-critical cargo and passengers.
  • Two trips are required to reach most of the destinations, and the distance travelled may be very much longer than the actual distance between departure and destination points. Arriving at the hub and spending some time there increases the duration of the journey. Missing the connecting bus, flight, or train is possible and may be more troublesome than just a delay.

Commercial aviation

In 1955

  • Badcock, B. A., 2002, Making Sense of Cities: A Geographical Survey, London: Arnold, pp. 63–94.
  • Lawrence, H., 2004, "Aviation and the Role of Government", London: Kendall Hunt, pp. 227–230.
  • Markusen, A., 1996, "Sticky Places in Slippery Space: A Typology of Industrial Districts", in Economic Geography, 72: 293–313.
  1. ^ Delta Air Lines Newsroom - Press Kit. Retrieved on 2013-08-16.
  2. ^  
  3. ^ Hemmer, C.;  
  4. ^ Keck, Zachary (2 April 2014). "US Swears Asia Pivot Isn't Dead". The Diplomat. Retrieved 3 April 2014. 


See also

In April 2014, all ten ASEAN defense chiefs and United States Secretary of Defense Chuck Hagel attended the U.S.-ASEAN Defense Forum in Hawaii. This marked the first time the U.S. had hosted the forum. This was part of an American attempt to get the countries to strengthen military ties between themselves.[4]

This system was famously inspired by John Foster Dulles, who served as US Secretary of State under the Eisenhower administration from 1953 to 1959. He addressed this term twice in Tokyo and once at the San Francisco Peace Treaty of September 1951. This led to talks for bilateral peace treaty between US and Japan. Security Treaty Between the United States and Japan of 1951, U.S.-South Korea Status of Forces Agreement of 1953 or U.S.-Republic of China Mutual Defense Treaty of 1954 (replaced by the Taiwan Relations Act) are some of the examples that manifests these bilateral relations.[3]

In the sphere of East Asian relations, according to Victor Cha, hub-and-spokes refers to the network of bilateral alliances between United States and other individual East Asian countries. This system constructs a dominant bilateral security architecture in East Asia, differing from the multilateral security architecture in Europe. United States acts as a "hub" and Asian countries such as South Korea, Taiwan and Japan fall under the category "spokes." Whereas there is a strong alliance between the hub and the spoke, there are no firmly established connections between the spokes themselves.[2]

East Asian relations

The hub-and-spoke model has also been used in economic geography theory to classify a particular type of industrial district. Ann Markusen, an economic geographer, theorised about industrial districts, where a number of key industrial firms and facilities act as a hub, with associated businesses and suppliers benefiting from their presence and arranged around them like the spokes of a wheel. The chief characteristic of such hub-and-spoke industrial districts is the importance of one or more large companies, usually in one industrial sector, surrounded by smaller, associated businesses. Examples of cities with such districts include Seattle (where Boeing was founded), Silicon Valley (a high tech hub), and Toyota City, with Toyota.

Industrial distribution

For passenger road transport, the spoke-hub model does not apply because drivers generally take the shortest or fastest route between two points.

The spoke-hub model is applicable to other forms of transportation:


Airlines have extended the hub-and-spoke model in various ways. One method is to create additional hubs on a regional basis, and to create major routes between the hubs. This reduces the need to travel long distances between nodes that are close together. Another method is to use focus cities to implement point-to-point service for high traffic routes, bypassing the hub entirely.

in 1978, Delta's hub and spoke paradigm was adopted by several other airlines. deregulated adopted the hub and spoke model for overnight package delivery, and after the airline industry was FedEx. In the mid-1970s Eastern Air Lines in an effort to compete with [1]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.