World Library  
Flag as Inappropriate
Email this Article

Kinetin

Article Id: WHEBN0001804137
Reproduction Date:

Title: Kinetin  
Author: World Heritage Encyclopedia
Language: English
Subject: Folke K. Skoog, Cytokinin, Furans, Abscisic acid, Tobacco
Collection: Aging-Related Substances in Plants, Cytokinins, Furans
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Kinetin

Kinetin
Names
IUPAC name
N6-furfuryladenine
Identifiers
 Y
ChEBI  N
ChemSpider  N
EC number 208-382-2
Jmol-3D images Image
KEGG  N
PubChem
RTECS number AU6270000
UNII  Y
Properties
C10H9N5O
Molar mass 215.22 g·mol−1
Appearance Off-white amorphous powder
Melting point 269–271 °C (516–520 °F; 542–544 K) (decomposes)
Structure
cubic
Hazards
S-phrases S22 S24/25
Related compounds
Related
cytokinin
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 N  (: Y/N?)

Kinetin is a type of cytokinin, a class of plant hormone that promotes cell division. Kinetin was originally isolated by Miller[1] and Skoog et al.[2] as a compound from autoclaved herring sperm DNA that had cell division-promoting activity. It was given the name kinetin because of its ability to induce cell division, provided that auxin was present in the medium. Kinetin is often used in plant tissue culture for inducing formation of callus (in conjunction with auxin) and to regenerate shoot tissues from callus (with lower auxin concentration).

For a long time, it was believed that kinetin was an artifact produced from the deoxyadenosine residues in furfural — an oxidative damage product of deoxyribose sugar in DNA — and its quenching by the adenine base's converting it into N6-furfuryladenine, kinetin.

Kinetin is also widely used in producing new plants from tissue cultures.

History

In 1939 P. A. C. Nobécourt (Paris) began the first permanent callus culture from root explants of carrot (Daucus carota). Such a culture can be kept forever by successive transplantations onto fresh nutrient agar. The transplantations occur every three to eight weeks. Callus cultures are not cell cultures, since whole tissue associations are cultivated. Though many cells keep their ability to divide, this is not true for all. One reason for this is the aneuploidy of the nuclei and the resultant unfavourable chromosome constellations.

In 1941 J. van Overbeek (Rijksuniversiteit Utrecht) introduced coconut milk as a new component of nutrient media for callus cultures.[3] Coconut milk is liquid endosperm. It stimulates the embryo to grow when it is supplied with food at the same time. Results yielded from callus cultures showed that its active components stimulate the growth of foreign cells too.

In 1954 F. Skoog (University of Wisconsin, Madison) developed a technique for the generation and culture of wound tumor tissue from isolated shoot parts of tobacco (Nicotiana tabacum). The developing callus grows when supplied with yeast extract, coconut milk, or old DNA preparations. Freshly prepared DNA has no effect but becomes effective after autoclaving. This led to the conclusion that one of its breakdown products is required for cell growth and division. The substance was characterized, was given the name kinetin, and classified as a phytohormone.

See also

References

  1. ^ Schwartz, Dale. "Carlos O. Miller" (pdf). Retrieved 15 November 2011. 
  2. ^ Amasino, R. (2005). "1955: Kinetin Arrives. The 50th Anniversary of a New Plant Hormone". Plant Physiology 138 (3): 1177–1184.  
  3. ^ Van Overbeek, J.; Conklin, M. E.; Blakeslee, A. F. (1941). "Factors in Coconut Milk Essential for Growth and Development of Very Young Datura Embryos". Science 94 (2441): 350–1.  
  • Mok, David W.S.; Mok, Machteld C., eds. (1994). Cytokinins: chemistry, activity and function. Boca Raton, FL: CRC Press.  
  • Barciszewski, J.; Siboska, G. E.; Pedersen, B. O.; Clark, B. F.; Rattan, S. I. (1996). "Evidence for the presence of kinetin in DNA and cell extracts". FEBS Letters 393 (2–3): 197–200.  
  • Barciszewski, J.; Rattan, S. I. S.; Siboska, G.; Clark, B. F. C. (1999). "Kinetin — 45 years on". Plant Science 148: 37.  
  • Rattan, S. I. S.; Clark, B. F. C. (1994). "Kinetin Delays the Onset of Aging Characteristics in Human Fibroblasts". Biochemical and Biophysical Research Communications 201 (2): 665–672.  
  • Rattan, S. I. S. (2002). "N6-Furfuryladenine (Kinetin) as a Potential Anti-Aging Molecule". Journal of Anti-Aging Medicine 5: 113–111.  
  • Hertz, Nicholas T.; Berthet, Amandine; Sos, Martin L.; Thorn, Kurt S.; Burlingame, Al L.; Nakamura, Ken; Shokat, Kevan M. "A Neo-Substrate that Amplifies Catalytic Activity of Parkinson’s-Disease-Related Kinase PINK1". Cell 154 (4): 737–747.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.