World Library  
Flag as Inappropriate
Email this Article

Dimethylsulfoniopropionate

Article Id: WHEBN0002000000
Reproduction Date:

Title: Dimethylsulfoniopropionate  
Author: World Heritage Encyclopedia
Language: English
Subject: Plankton, Coccolithophore, Polar seas, Nanophytoplankton, Thin layers (oceanography)
Collection: Carboxylate Anions, Planktology, Thioethers
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Dimethylsulfoniopropionate

Dimethylsulfoniopropionate
Identifiers
CAS number  YesY
PubChem
ChemSpider  N
Jmol-3D images Image 1
Properties
Molecular formula C5H10O2S
Molar mass 134.1967
Appearance white crystalline powder with hygroscopicity and characteristic odor.[1]
Melting point 120 to 125 °C (248 to 257 °F; 393 to 398 K)[2]
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N   YesY/N?)

Dimethylsulfoniopropionate (frequently abbreviated to DMSP), is an formula (CH3)2S+CH2CH2COO. This zwitterionic metabolite can be found in marine phytoplankton, seaweeds, and some species of terrestrial and aquatic vascular plants. It functions as an osmolyte as well as several other physiological and environmental roles have also been identified.[3] DMSP was first identified in the marine red alga Polysiphonia fastigiata by Frederick Challenger and Margaret Simpson (later Dr. Whitaker) [4]

Contents

  • Biosynthesis 1
  • Degradation 2
  • See also 3
  • References 4
  • External links 5

Biosynthesis

In higher plants, DMSP is biosynthesized from S-Methylmethionine. Two intermediates in this conversion are dimethylsulfoniumpropylamine and dimethylsulfoniumpropionaldehyde.[5] In algae, however, the biosynthesis starts with removal of the amino group from Methionine, rather than from S-Methylmethionine.

Degradation

DMSP is broken down by marine microbes to form two major volatile sulfur products, each with distinct effects on the environment. Its major breakdown product is methanethiol (CH3SH), which is assimilated by bacteria into protein sulfur. Its second volatile breakdown product is dimethyl sulfide (CH3SCH3; DMS). Most DMS in seawater is cleaved from DMSP by the enzyme DMSP-lyase, although many non-marine species of bacteria convert methanethiol to DMS.

DMS is also taken up by marine bacteria, but not as rapidly as methanethiol. Although DMS usually consists of less than 25% of the volatile breakdown products of DMSP, the high reactivity of methanethiol makes the steady-state DMS concentrations in seawater approximately 10 times those of methanethiol (~3 nM vs. ~0.3 nM). Curiously, there have never been any published correlations between the concentrations of DMS and methanethiol. This is probably due to the non-linear abiotic and microbial uptake of methanethiol in seawater, and the comparatively low reactivity of DMS. However, a significant portion of DMS in seawater is oxidized to dimethyl sulfoxide (DMSO).

Relevant to global climate, DMS is thought to play a role in the Earth's heat budget by decreasing the amount of solar radiation that reaches the Earth's surface.

DMSP has also been implicated in influencing the taste and odour characteristics of various products. For example, although DMSP is odourless and tasteless, it is accumulated at high levels in some marine herbivores or filter feeders. Increased growth rates, vigour and stress resistance among animals cultivated on such diets have been reported. DMS, is responsible for repellent, 'off' tastes and odours that develop in some seafood products because of the action of bacterial DMSP-lyase, which cogenerates acrylate.

See also

  • CLAW hypothesis, proposing a feedback loop that operates between ocean ecosystems and the Earth's climate
  • Coccolithophore, a group of marine unicellular planktonic photosynthetic algae, producer of DMSP
  • Dimethyl sulfide, a breakdown product of DMSP along with methanethiol
  • Dimethyl selenide, a selenium analogue of DMS produced by bacteria and phytoplankton
  • Emiliania huxleyi, a coccolithophorid producing DMSP

References

  1. ^ http://tianyuchem.en.alibaba.com/product/538880245-213360543/FACTORYSALE_Dimethylpropiothetin_7314_30_9.html
  2. ^ http://tianyuchem.en.alibaba.com/product/538880245-213360543/FACTORYSALE_Dimethylpropiothetin_7314_30_9.html
  3. ^ DeBose, Jennifer L.; Sean C. Lema; Gabrielle A. Nevitt (2008-03-07). "Dimethylsulfoniopropionate as a foraging cue for reef fishes" (abstract). Science 319 (5868): 1356.  
  4. ^ Challenger, Frederick; Margaret Isabel Simpson (2014-07-14). "Studies on biological methylation. Part XII. A precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata. Dimethyl-2-carboxyethylsulphonium hydroxide and its salts." (pdf). Journal of the Chemical Society (London) 1948: 1591–1597.  
  5. ^ Scott D. McNeil, Michael L. Nuccio, and Andrew D. Hanson "Betaines and Related Osmoprotectants. Targets for Metabolic Engineering of Stress Resistance" Plant Physiology, August 1999, Vol. 120, pp. 945–949. doi:10.1104/pp.120.4.945

External links

  • DMS and Climate
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.