World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000576155
Reproduction Date:

Title: Chromoplast  
Author: World Heritage Encyclopedia
Language: English
Subject: Chloroplast, Plant cell, Etioplast, Stromule, Elaioplast
Collection: Organelles, Photosynthesis
Publisher: World Heritage Encyclopedia


The coloration of the petals and sepals on the Bee orchid is controlled by a specialized organelle in plant cells called a chromoplast.

Chromoplasts are pigment synthesis and storage in specific photosynthetic eukaryotes.[1] It is thought that like all other plastids including chloroplasts and leucoplasts they are descended from symbiotic prokaryotes.[2]


  • Function 1
  • Structure and classification 2
  • Evolution 3
  • Research 4
  • Compare 5
  • References 6
  • External links 7


Chromoplasts are found in fruits, flowers, roots, and stressed and aging leaves, and are responsible for their distinctive colors. This is always associated with a massive increase in the accumulation of carotenoid pigments. The conversion of chloroplasts to chromoplasts in ripening is a classic example.

They are generally found in mature tissues and are derived from preexisting mature plastids. Fruits and flowers are the most common structures for the biosynthesis of carotenoids, although other reactions occur there as well including the synthesis of sugars, starches, lipids, aromatic compounds, vitamins and hormones.[3] The DNA in chloroplasts and chromoplasts is identical.[2] One subtle difference in DNA was found after a liquid chromatography analysis of tomato chromoplasts was conducted, revealing increased cytosine methylation.[3]

Chromoplasts synthesize and store pigments such as orange carotene, yellow xanthophylls, and various other red pigments. As such, their color varies depending on what pigment they contain. The main evolutionary purpose of chromoplasts is probably to attract pollinators or eaters of colored fruits, which help disperse seeds. However, they are also found in roots such as carrots and sweet potatoes. They allow the accumulation of large quantities of water-insoluble compounds in otherwise watery parts of plants.

When leaves change color in the autumn, it is due to the loss of green chlorophyll, which unmasks preexisting carotenoids. In this case, relatively little new carotenoid is produced—the change in plastid pigments associated with leaf senescence is somewhat different from the active conversion to chromoplasts observed in fruit and flowers.

There are some species of flowering plants that contain little to no carotenoids. In such cases there are plastids present within the petals that closely resemble chromoplasts and are sometimes visually indistinguishable. Anthocyanins and flavonoids located in the cell vacuoles are responsible for other colors of pigment.[1]

The term "chromoplast" is occasionally used to include any plastid that has pigment, mostly to emphasize the difference between them and the various types of leucoplasts, plastids that have no pigments. In this sense, chloroplasts are a specific type of chromoplast. Still, "chromoplast" is more often used to denote plastids with pigments other than chlorophyll.

Structure and classification

Using a light microscope chromoplasts can be differentiated and are classified into four main types. The first type is composed of proteic stroma with granules. The second is composed of protein crystals and amorphous pigment granules. The third type is composed of protein and pigment crystals. The fourth type is a chromoplast which only contains crystals. An electron microscope reveals even more, allowing for the identification of substructures such as globules, crystals, membranes, fibrils and tubules. The substructures found in chromoplasts are not found in the mature plastid that it divided from.[2]

The presence, frequency and identification of substructures using an electron microscope has led to further classification, dividing chromoplasts into five main categories: Globular chromoplasts, crystalline chromoplasts, fibrillar chromoplasts, tubular chromoplasts and membranous chromoplasts.[2] It has also been found that different types of chromoplasts can coexist in the same organ.[3] Some examples of plants in the various categories include mangos, which have globular chromoplasts, and carrots which have crystalline chromoplasts.[4]

Although some chromoplasts are easily categorized, others have characteristics from multiple categories that make them hard to place. Tomatoes accumulate carotenoids, mainly lycopene crystalloids in membrane-shaped structures, which could place them in either the crystalline or membranous category.[3]


Plastids are descendants of cyanobacteria, photosynthetic prokaryotes, which integrated themselves into the eukaryotic ancestor of algæ and plants, forming an endosymbiotic relationship. The ancestors of plastids diversified into a variety of plastid types, including chromoplasts.[3] Plastids also possess their own small genome and some have the ability to produce a percentage of their own proteins.

The main evolutionary purpose of chromoplasts is to attract animals and insects to pollinate their flowers and disperse their seeds. The bright colors often produced by chromoplasts is one of many ways to achieve this. Many plants have evolved symbiotic relationships with a single pollinator. Color can be a very important factor in determining which pollinators visit a flower, as specific colors attract specific pollinators. White flowers tend to attract beetles, bees are most often attracted to violet and blue flowers, and butterflies are often attracted to warmer colors like yellows and oranges.[5]


Chromoplasts are not widely studied and are rarely the main focus of scientific research. They often play a role in research on the tomato plant (Solanum lycopersicum). Lycopene is responsible for the red color of a ripe fruit in the cultivated tomato, while the yellow color of the flowers is due to xanthophylls violaxanthin and neoxanthin.[6]

Carotenoid biosynthesis occurs in both chromoplasts and leaves, which results in the production of the carotenoid lutein.[6]

White flowers are caused by a recessive thylakoid plexus. The new membranes are the site of the formation of carotenoid crystals. These newly synthesized membranes do not come from the thylakoids, but rather from vesicles generated from the inner membrane of the plastid. The most obvious biochemical change would be the downregulation of photosynthetic gene expression which results in the loss of chlorophyll and stops photosynthetic activity.[3]

In oranges, the synthesis of carotenoids and the disappearance of chlorophyll causes the color of the fruit to change from green to yellow. The orange color is often added artificially—light yellow-orange is the natural color created by the actual chromoplasts.[7]

Valencia oranges Citris sinensis L are a cultivated orange grown extensively in the state of Florida. In the winter, Valencia oranges reach their optimum orange-rind color while reverting to a green color in the spring and summer. While it was originally thought that chromoplasts were the final stage of plastid development, in 1966 it was proved that chromoplasts can revert to chloroplasts, which causes the oranges to turn back to green.[7]



  1. ^ a b Whatley JM, Whatley FR (1987). "When is a Chromoplast". New Phytologist 106 (4): 667–678.  
  2. ^ a b c d Camara B, Hugueney P, Bouvier F, Kuntz M, Monéger R (1995). "Biochemistry and molecular biology of chromoplast development". Int. Rev. Cytol. 163: 175–247.  
  3. ^ a b c d e f Egea I, Barsan C, Bian W; et al. (October 2010). "Chromoplast differentiation: current status and perspectives". Plant Cell Physiol. 51 (10): 1601–11.  
  4. ^ Vasquez-Caicedo AL, Heller A, Neidhart S, Carle R (August 2006). "Chromoplast morphology and β-carotene accumulation during postharvest ripening of Mango Cv. 'Tommy Atkins'". J. Agric. Food Chem. 54 (16): 5769–76.  
  5. ^ Waser, NM., Chittka, L., Price, MV., Williams, NM., Ollerton, J. (June 1996). "Generalization in Pollination Systems, and Why it Matters". Ecology 77 (4): 1043–60.  
  6. ^ a b c Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (August 2006). "A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus". Plant Cell 18 (8): 1947–60.  
  7. ^ a b Thomson, WW (1966). "Ultrastructural Development of Chromoplasts in Valencia Oranges". Botanical Gazette 127 (2-3): 133–9.  

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.