World Library  
Flag as Inappropriate
Email this Article

Brassinosteroid

Article Id: WHEBN0000670855
Reproduction Date:

Title: Brassinosteroid  
Author: World Heritage Encyclopedia
Language: English
Subject: Plant hormone, Plant hormones, Jasmonate, Brassinolide, Karrikin
Collection: Alcohols, Lactones, Plant Hormones, Steroids
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Brassinosteroid

Brassinolide, the first brassinosteroid isolated and shown to have biological activity

Brassinosteroids (BRs) are a class of polyhydroxysteroids that have been recognized as a sixth class of Brassica napus) pollen.[1] Brassinolide was the first isolated brassinosteroid in 1979, when pollen from Brassica napus was shown to promote stem elongation and cell divisions, and the biologically active molecule was isolated.[1][2] The yield of brassinosteroids from 230 kg of Brassica napus pollen was only 10 mg. Since their discovery, over 70 BR compounds have been isolated from plants.[3]

Contents

  • Biosynthesis 1
  • Hormonal activity 2
  • Agricultural uses 3
  • Detection and chemical analysis 4
  • References 5
  • External links 6

Biosynthesis

The BR is biosynthesised from

  • Brassinosteroid page

External links

  1. ^ a b Grove, Michael D.; Spencer, Gayland F.; Rohwedder, William K.; Mandava, Nagabhushanam; Worley, Joseph F.; Warthen, J. David; Steffens, George L.; Flippen-Anderson, Judith L.; Cook, J. Carter (1979). "Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen". Nature 281 (5728): 216–217.  
  2. ^ Grove, M.D.; Spencer, G.F.; Rohwedder, W.K.; Mandava, N.; Worley, J.F.; Warthen, J.D.; Ste; Flippen-Anderson, J.L.; Cook, J.C.; et al. (1979). "Brassins: a new family of plant hormones from rape pollen". Nature 225 (5237): 1065–66.  
  3. ^ Bajguz, A. (2007). "Metabolism of brassinosteroids in plants". Plant Physiology and Biochemistry 45 (2): 95–107.  
  4. ^ Fujioka, S; Sakurai, A. (1997). "Biosynthesis and metabolism of brassinosteroids". Physiologia Plantarum 100 (3): 710–15.  
  5. ^ a b c d e f Clouse, SD; Sasse, JM. (1998). "Brassinosteroids: Essential regulators of plant growth and development". Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 427–51.  
  6. ^ Li, JM; Chory, J. (1997). "A putative leucine rich repeat receptor kinase involved in brassinosteroid signal transduction". Cell 90 (5): 929–38.  
  7. ^ Nemhauser, Jennifer L.; Mockler, Todd C.; Chory, Joanne (2004). "Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis". PLoS Biology 2 (9): e258.  
  8. ^ Caño-Delgado, A; Yin, Y; Yu, C; Vafeados, D; Mora-Garcia, S; Cheng, JC; Nam, KH; Li, J; Chory, J (2004). "BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis". Development (Cambridge, England) 131 (21): 5341–51.  
  9. ^ Hewitt, FR; Hough, T; O'Neill, P; Sasse, JM; Williams, EG; Rowan, KS (1985). "Effect of brassinolide and other growth regulators on the germination and growth of pollen tubes of "Prunus avium" using a multiple hanging drop assay". Aust. J Plant Physiol 12 (2): 201–11.  
  10. ^ Sondhi, N.; Bhardwaj, R.; Kaur, S.; Singh, B.; Kumar, N. (2008). "Isolation of 24-epibrassinolide from leaves of "Aegle marmelos" and evaluation of its antigenotoxicity potential employing Allium cepa chromosomal aberration assay". Plant Growth Regul 54 (3): 217–224.  
  11. ^ Sharma, P.; Bhardwaj, R. (2007). "Effects of 24-Epibrassinolide on growth and metal uptake in "Brassica juncea" L. under copper metal stress". Acta Physiologiae Plantarum 29 (3): 259–263.  
  12. ^ Sharma, P; Bhardwaj, R; Arora, HK; Arora, N; Kumar, A. (2008). "Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in "Brassica juncea". Biol. Plant 52 (4): 767–770.  
  13. ^ Xiao Jian, Xia; Zhang, Y; Wu, JX; Wang, JT; Zhou, YH; Shi, K; Yu, YL; Yu, JQ (2009). "Brassinosteroids Promote Metabolism of Pesticides in Cucumber". J. Agric. Food Chem. 57 (18): 8406–8413.  
  14. ^ a b c Anuradha, S, and S Seeta Ram Rao. Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Vol. 40. N.p.: Plant Growth Regulation, 2003. 29-32. Print.
  15. ^ El-Meleigy, El-Sayed A., Mahdi F. Gabr, Fouad H. Mohamed, and Mona A. Ismail. Responses to NaCl Salinity of Tomato Cultivated and Breeding Lines Differing in Salt Tolerance in Callus Cultures. N.p.: INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY, 2004. 1560-8530. Print.
  16. ^ a b Kang, Y Y., and S R. Guo. ROLE OF BRASSINOSTEROIDS ON HORTICULTURAL CROPS. N.p.: College of Horticulture, n.d. 269-88. Print.
  17. ^ a b c Khripach, VLADIMIR, Vlandimir Zhabinsk II, and Aede D. Groot. Twenty Years of Brassinosteroids: Steroidal Plant Hormones Warrant Better Crops for the XXI Century. 86th ed. N.p.: Annals of Botany, 2000. 441-47. Print.
  18. ^ Kim, Seong-Ki, Hiroshi Abe, C. H. Anthony Little, and Richard P. Pharis. Identification of Two Brassinosteroids from the Cambial Region of Scots Pine (Pinus silverstris) by Gas Chromatography-Mass Spectrometry, after Detection Using a Dwarf Rice Lamina Inclination Bioassay. N.p.: Plant Physiology, 1990. 1709-13. Print.

References

BRs can be detected by gas chromatography mass spectrometry and bioassays.[18]

Detection and chemical analysis

In Germany, extract from the plant is allowed for use as a "plant strengthening substance."

BR could also help bridge the gap of the consumers' health concerns and the producers need for growth. A major benefit of using BR is that it does not interfere with the environment because they act in natural doses in a natural way.[17] Since it is a “plant strengthening substance” and it is natural, BR application would be more favorable than pesticides and does not contribute to the co-evolution of pests.[17]

BR might reveal to have a prominent interest in the role of horticultural crops. Based on extensive research BR has the ability to improve the quantity and quality of horticultural crops and protect plants against many stresses that can be present in the local environment.[16][17] With the many advances in technology dealing with the synthesis of more stable synthetic analogues and the genetic manipulation of cellular BR activity, using BR in the production of horticultural crops has become a more practical and hopeful strategy for improving crop yields and success.[16]

Agricultural uses

BRs have also been reported to have a variety of effects when applied to rice seeds (Oryza sativa L.).Seeds treated with BRs were shown to reduce the growth inhibitory effect of salt stress.[14] When the developed plants fresh weight was analyzed the treated seeds outperformed plants grown on saline and non-saline medium however when the dry weight was analyzed BR treated seeds only outperformed untreated plants that were grown on saline medium.[14] When dealing with tomatoes (Lycopersicon esculentum) under salt stress the concentration of cholophyll a and cholophyll b were decreased and thus pigmentation was decreased as well.[15] BR treated rice seeds considerably restored the pigment level in plants that were grown on saline medium when compared to non-treated plants under the same conditions.[14]

In all Type of brassinosteroids 28-homoBL is the most effective type of brassinosteroids. (sandeep kumar et al. 2010 Jour. of Indian bot society) Brassinosteroids increased tolerance to high temperature in Brassica juncea L. (Kumar S. 2010) The ability of 28-homobrassinolide to confer resistance to stress in Brassica juncea L. has also established (sandeep kumar). Application of 24-epiBL have any protective role on shoot, root length, soluble protein, proline content and peroxidases along with proline content PPO and IAA in seedlings of B. juncea L. under seasonal stress (Geetika Sirhindi) [13] Application of brassinosteroids to cucumbers was demonstrated to increase the [12][11] BRs have been reported to counteract both abiotic and biotic stress in plants.

24-Epibrassinolide (EBL), a brassinosteroid isolated from Aegle marmelos Correa (Rutaceae), was further evaluated for the antigenotoxicity against maleic hydrazide (MH)-induced genotoxicity in Allium cepa chromosomal aberration assay. It was shown that the percentage of chromosomal aberrations induced by maleic hydrazide (0.01%) declined significantly with 24-epibrassinolide treatment.[10]

Extract from the plant Lychnis viscaria contains a relatively high amount of Brassinosteroids. Lychnis viscaria increases the disease resistance of surrounding plants.

  • Promotion of cell expansion and cell elongation;[5] works with auxin to do so.[7]
  • It has an unclear role in cell division and cell wall regeneration.[5]
  • Promotion of vascular differentiation; BR signal transduction has been studied during vascular differentiation.[8]
  • Is necessary for pollen elongation for pollen tube formation.[9]
  • Acceleration of senescence in dying tissue cultured cells; delayed senescence in BR mutants supports that this action may be biologically relevant.[5]
  • Can provide some protection to plants during chilling and drought stress.[5]

BRs have been shown to be involved in numerous plant processes:

Hormonal activity

Brassinosteroids are recognized at the cell membrane, although they are membrane-soluble. [5] direction, but it is not known if this movement is biologically relevant.acropetal Experiments have shown that long distance transport is possible and that flow is in an [6][5]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.