World Library  
Flag as Inappropriate
Email this Article

Transcranial magnetic stimulation

 

Transcranial magnetic stimulation

Transcranial magnetic stimulation
Intervention
Transcranial magnetic stimulation (schematic diagram)
MeSH

Transcranial magnetic stimulation (TMS) is a noninvasive method used to stimulate small regions of the brain. During a TMS procedure, a magnetic field generator, or "coil", is placed near the head of the person receiving the treatment.[1]:3 The coil produces small electric currents in the region of the brain just under the coil via electromagnetic induction. The coil is connected to a pulse generator, or stimulator, that delivers electric current to the coil.[2]

TMS is used diagnostically to measure the connection between the brain and a muscle to evaluate damage from stroke, multiple sclerosis, amyotrophic lateral sclerosis, movement disorders, motor neuron disease and injuries and other disorders affecting the facial and other cranial nerves and the spinal cord.[3] The use of single-pulse TMS was approved by the FDA for use in migraine[4] and repetitive TMS (rTMS) for use in treatment-resistant major depressive disorder.[5] Evidence suggests it is useful for neuropathic pain[6] and treatment-resistant major depressive disorder.[6][7] Evidence also suggests that TMS may be useful for negative symptoms of schizophrenia and loss of function caused by stroke.[6] As of 2014, all other investigated uses of rTMS have only possible or no clinical efficacy.[6] Matching the discomfort of TMS to distinguish true effects from placebo is an important and challenging issue that influences the results of clinical trials.[6][8][9] The greatest risks of TMS are the rare occurrence of syncope (fainting) and even less commonly, induced seizures.[8] Other adverse effects of TMS include discomfort or pain, transient induction of hypomania, transient cognitive changes, transient hearing loss, transient impairment of working memory, and induced currents in electrical circuits in implanted devices.[8]

Contents

  • Medical uses 1
    • Diagnosis 1.1
    • Treatment 1.2
  • Adverse effects 2
  • Devices and procedure 3
  • Society and culture 4
    • Regulatory approvals 4.1
      • Navigated TMS 4.1.1
      • Depression 4.1.2
      • Migraine 4.1.3
    • Health insurance considerations 4.2
      • United States 4.2.1
        • Commercial health insurance 4.2.1.1
        • Medicare 4.2.1.2
      • United Kingdom's National Health Service 4.2.2
  • Technical information 5
    • Mechanism of action 5.1
    • Coil types 5.2
  • History 6
  • Research 7
  • Study blinding 8
  • See also 9
  • References 10
  • Further reading 11
  • External links 12

Medical uses

The use of TMS can be divided into diagnostic and therapeutic uses.

Diagnosis

TMS can be used clinically to measure activity and function of specific brain circuits in humans.[3] The most robust and widely accepted use is in measuring the connection between the primary motor cortex and a muscle to evaluate damage from stroke, multiple sclerosis, amyotrophic lateral sclerosis, movement disorders, motor neuron disease and injuries and other disorders affecting the facial and other cranial nerves and the spinal cord.[3][10][11][12] TMS has been suggested as a means of assessing short-interval intracortical inhibition (SICI) which measures the internal pathways of the motor cortex but this use has not yet been validated.[13]

Treatment

For neuropathic pain, for which there is little effective treatment, high-frequency (HF) repetitive TMS (rTMS) appears effective.[6]

For treatment-resistant major depressive disorder, HF-rTMS of the left dorsolateral prefrontal cortex (DLPFC) appears effective and low-frequency (LF) rTMS of the right DLPFC has probable efficacy.[6][7][14] The Royal Australia and New Zealand College of Psychiatrists has endorsed rTMS for treatment resistant MDD.[15][16]

A 2015 Cochrane review found not enough evidence to make any conclusions in schizophrenia.[17] For negative symptoms another review found possible efficacy.[6]

For loss of function caused by stroke LF-rTMS of the corresponding brain region has probable efficacy.[6]

Many other potential uses have only demonstrated weak or negligible efficacy. TMS has failed to show effectiveness for the treatment of brain death, coma, and other persistent vegetative states.[6] As of 2014 there was insufficient evidence to determine the safety and efficacy of TMS in panic disorder.[18] In 2003 there was not enough evidence to determine if transcranial magnetic stimulation was useful in obsessive compulsive disorder.[19]

Adverse effects

Although TMS is generally regarded as safe, risks increase for therapeutic rTMS compared to single or paired TMS for diagnostic purposes. In the field of therapeutic TMS, risks increase with higher frequencies.[8]

The greatest immediate risk is the rare occurrence of syncope (fainting) and even less commonly, induced seizures.[8][20]

Other adverse short-term effects of TMS include discomfort or pain, transient induction of hypomania, transient cognitive changes, transient hearing loss, transient impairment of working memory, and induced currents in electrical circuits in implanted devices.[8]

Devices and procedure

During a transcranial magnetic stimulation (TMS) procedure, a magnetic field generator, or "coil" is placed near the head of the person receiving the treatment.[1]:3 The coil produces small electric currents in the region of the brain just under the coil via electromagnetic induction. The coil is positioned by finding anatomical landmarks on the skull including, but not limited to, the inion or the nasion.[21] The coil is connected to a pulse generator, or stimulator, that delivers electric current to the coil.[2]

Society and culture

Regulatory approvals

Navigated TMS

Nexstim obtained 510(k) FDA clearance of Navigated Brain Stimulation for the assessment of the primary motor cortex for pre-procedural planning in December 2009.[22]

Nexstim obtained FDA 510K clearance for NexSpeech navigated brain stimulation device for neurosurgical planning in June 2011.[23]

Depression

MagVenture received FDA 510K clearance to market its MagVita Therapy System as a medical device for the delivery of repetitive Transcranial Magnetic Stimulation as a treatment for major depressive disorder in July 2015.[24]

Neuronetics obtained FDA 510K clearance to market its NeuroStar System for use in adults with treatment-resistant major depressive disorder (December 2008).[5]

Migraine

eNeura Therapeutics obtained classification of Cenera System for use to treat migraine headache as a Class II medical device under the "de novo pathway"[25] in December 2013.[4]

Health insurance considerations

United States

Commercial health insurance

In 2013, several commercial health insurance plans in the United States, including Anthem, Health Net, and Blue Cross Blue Shield of Nebraska and of Rhode Island, covered TMS for the treatment of depression for the first time.[26] In contrast, UnitedHealthcare issued a medical policy for TMS in 2013 that stated there is insufficient evidence that the procedure is beneficial for health outcomes in patients with depression. UnitedHealthcare noted that methodological concerns raised about the scientific evidence studying TMS for depression include small sample size, lack of a validated sham comparison in randomized controlled studies, and variable uses of outcome measures.[27] Other commercial insurance plans whose 2013 medical coverage policies stated that the role of TMS in the treatment of depression and other disorders had not been clearly established or remained investigational included Aetna, Cigna and Regence.[28]

Medicare

Policies for Medicare coverage vary among local jurisdictions within the Medicare system,[29] and Medicare coverage for TMS has varied among jurisdictions and with time. For example:

  • In early 2012 in New England, Medicare covered TMS for the first time in the United States.[30] However, that jurisdiction later decided to end coverage after October, 2013.[31]
  • In August 2012, the jurisdiction covering Arkansas, Louisiana, Mississippi, Colorado, Texas, Oklahoma, and New Mexico determined that there was insufficient evidence to cover the treatment,[32] but the same jurisdiction subsequently determined that Medicare would cover TMS for the treatment of depression after December 2013.[33]

United Kingdom's National Health Service

The United Kingdom's National Institute for Health and Care Excellence (NICE) issues guidance to the National Health Service (NHS) in England, Wales, Scotland and Northern Ireland. NICE guidance does not cover whether or not the NHS should fund a procedure. Local NHS bodies (primary care trusts and hospital trusts) make decisions about funding after considering the clinical effectiveness of the procedure and whether the procedure represents value for money for the NHS.[34]

NICE evaluated TMS for severe depression (IPG 242) in 2007, and subsequently considered TMS for reassessment in January 2011 but did not change its evaluation.[35] The Institute found that TMS is safe, but there is insufficient evidence for its efficacy.[35]

In January 2014, NICE reported the results of an evaluation of TMS for treating and preventing migraine (IPG 477). NICE found that short-term TMS is safe but there is insufficient evidence to evaluate safety for long-term and frequent uses. It found that evidence on the efficacy of TMS for the treatment of migraine is limited in quantity, that evidence for the prevention of migraine is limited in both quality and quantity.[36]

Technical information

TMS - Butterfly Coils

TMS uses electromagnetic induction to generate an electric current across the scalp and skull without physical contact. A plastic-enclosed coil of wire is held next to the skull and when activated, produces a magnetic field oriented orthogonal to the plane of the coil. The magnetic field passes unimpeded through the skin and skull, inducing an oppositely directed current in the brain that activates nearby nerve cells in much the same way as currents applied directly to the cortical surface.[37]

The path of this current is difficult to model because the brain is irregularly shaped and electricity and magnetism are not conducted uniformly throughout its tissues. The magnetic field is about the same strength as an MRI, and the pulse generally reaches no more than 5 centimeters into the brain unless using the deep transcranial magnetic stimulation variant of TMS.[38] Deep TMS can reach up to 6 cm into the brain to stimulate deeper layers of the motor cortex, such as that which controls leg motion.[39]

Mechanism of action

From the Biot–Savart law

\mathbf B = \frac{\mu_0}{4\pi} I \int_C \frac{d\mathbf l \times \mathbf{\hat r}}{r^2}

it has been shown that a current through a wire generates a magnetic field around that wire. Transcranial magnetic stimulation is achieved by quickly discharging current from a large capacitor into a coil to produce pulsed magnetic fields between 2 and 3 T.[40] By directing the magnetic field pulse at a targeted area of the brain, one can either depolarize or hyperpolarize neurons in the brain. The magnetic flux density pulse generated by the current pulse through the coil causes an electric field as explained by the Maxwell-Faraday equation,

\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t} .

This electric field causes a change in the transmembrane current of the neuron, which leads to the depolarization or hyperpolarization of the neuron and the firing of an action potential.[40]

The exact details of how TMS functions are still being explored. The effects of TMS can be divided into two types depending on the mode of stimulation:

  • Single or paired pulse TMS causes neurons in the neocortex under the site of stimulation to depolarize and discharge an action potential. If used in the primary motor cortex, it produces muscle activity referred to as a motor evoked potential (MEP) which can be recorded on electromyography. If used on the occipital cortex, 'phosphenes' (flashes of light) might be perceived by the subject. In most other areas of the cortex, the participant does not consciously experience any effect, but his or her behaviour may be slightly altered (e.g., slower reaction time on a cognitive task), or changes in brain activity may be detected using sensing equipment.[41]
  • Repetitive TMS produces longer-lasting effects which persist past the initial period of stimulation. rTMS can increase or decrease the excitability of the corticospinal tract depending on the intensity of stimulation, coil orientation, and frequency. The mechanism of these effects is not clear, though it is widely believed to reflect changes in synaptic efficacy akin to long-term potentiation (LTP) and long-term depression (LTD).[42]

MRI images, recorded during TMS of the motor cortex of the brain, have been found to match very closely with PET produced by voluntary movements of the hand muscles innervated by TMS, to 5–22 mm of accuracy.[43] The localisation of motor areas with TMS has also been seen to correlate closely to MEG[44] and also fMRI.[45]

Coil types

The design of transcranial magnetic stimulation coils used in either treatment or diagnostic/experimental studies may differ in a variety of ways. These differences should be considered in the interpretation of any study result, and the type of coil used should be specified in the study methods for any published reports.

The most important considerations include:

  • the type of material used to construct the core of the coil
  • the geometry of the coil configuration
  • the biophysical characteristics of the pulse produced by the coil.

With regard to coil composition, the core material may be either a magnetically inert substrate (i.e., the so-called ‘air-core’ coil design), or possess a solid, ferromagnetically active material (i.e., the so-called ‘solid-core’ design). Solid core coil design result in a more efficient transfer of electrical energy into a magnetic field, with a substantially reduced amount of energy dissipated as heat, and so can be operated under more aggressive duty cycles often mandated in therapeutic protocols, without treatment interruption due to heat accumulation, or the use of an accessory method of cooling the coil during operation. Varying the geometric shape of the coil itself may also result in variations in the focality, shape, and depth of cortical penetration of the magnetic field. Differences in the coil substance as well as the electronic operation of the power supply to the coil may also result in variations in the biophysical characteristics of the resulting magnetic pulse (e.g., width or duration of the magnetic field pulse). All of these features should be considered when comparing results obtained from different studies, with respect to both safety and efficacy.[46]

A number of different types of coils exist, each of which produce different magnetic field patterns. Some examples:

  • round coil: the original type of TMS coil
  • figure-eight coil (i.e., butterfly coil): results in a more focal pattern of activation
  • double-cone coil: conforms to shape of head, useful for deeper stimulation
  • four-leaf coil: for focal stimulation of peripheral nerves[47]
  • H-coil: for deep transcranial magnetic stimulation

Design variations in the shape of the TMS coils allow much deeper penetration of the brain than the standard depth of 1.5-2.5 cm. Circular crown coils, Hesed (or H-core) coils, double cone coils, and other experimental variations can induce excitation or inhibition of neurons deeper in the brain including activation of motor neurons for the cerebellum, legs and pelvic floor. Though able to penetrate deeper in the brain, they are less able to produce a focused, localized response and are relatively non-focal.[8]

History

Early attempts at stimulation of the brain using a magnetic field included those, in 1896, of Arsène d'Arsonval in Paris and in 1910, of Silvanus P. Thompson in London.[48] The principle of inductive brain stimulation with eddy currents has been noted since the 20th century. The first successful TMS study was performed in 1985 by Anthony Barker and his colleagues at the Royal Hallamshire Hospital in Sheffield, England.[49] Its earliest application demonstrated conduction of nerve impulses from the motor cortex to the spinal cord, stimulating muscle contractions in the hand. As compared to the previous method of transcranial stimulation proposed by Merton and Morton in 1980[50] in which direct electric current was applied to the scalp, the use of electromagnets greatly reduced the discomfort of the procedure, and allowed mapping of the cerebral cortex and its connections.

Research

Areas of research include the rehabilitation of aphasia and motor disability after stroke,[6][8][11][12][51] tinnitus,[6][52] anxiety disorders,[6] obsessive-compulsive disorder,[6] amyotrophic lateral sclerosis,[6] multiple sclerosis,[6] epilepsy,[6] Alzheimer's disease,[6] Parkinson's disease,[53]schizophrenia,[6] substance abuse,[6] addiction,[6][54] and posttraumatic stress disorder (PTSD).[6][55]

TMS Research in animal studies is limited due to early FDA approval of TMS treatment of drug resistant depression. Because of this there has been no specific coils for animal models hence there are limited number of TMS coils that can be used for animal studies.[56] There are some attempts in the literature showing new coil designs for mice with improved stimulation profile [57]

Study blinding

It is difficult to establish a convincing form of "sham" TMS to test for placebo effects during controlled trials in conscious individuals, due to the neck pain, headache and twitching in the scalp or upper face associated with the intervention.[6][8] "Sham" TMS manipulations can affect cerebral glucose metabolism and MEPs, which may confound results.[58] This problem is exacerbated when using subjective measures of improvement.[8] Placebo responses in trials of rTMS in major depression are negatively associated with refractoriness to treatment, vary among studies and can influence results.[59]

A 2011 review found that only 13.5% of 96 randomized control studies of rTMS to the dorsolateral prefrontal cortex had reported blinding success and that, in those studies, people in real rTMS groups were significantly more likely to think that they had received real TMS, compared with those in sham rTMS groups.[60] Depending on the research question asked and the experimental design, matching the discomfort of rTMS to distinguish true effects from placebo can be an important and challenging issue.[6][8][9]

See also

References

  1. ^ a b NiCE. January 2014 Transcranial magnetic stimulation for treating and preventing migraine
  2. ^ a b Michael Craig Miller for Harvard Health Publications. July 26, 2012 Magnetic stimulation: a new approach to treating depression?
  3. ^ a b c Groppa, S.; Oliviero, A.; Eisen, A.; Quartarone, A.; Cohen, L. G.; Mall, V.; Kaelin-Lang, A.; Mima, T.; Rossi, S.; Thickbroom, G. W.; Rossini, P. M.; Ziemann, U.; Valls-Solé, J.; Siebner, H. R. (2012). "A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee". Clinical Neurophysiology 123 (5): 858–882.  
  4. ^ a b FDA 13 December 2013 classification reviewde novoFDA letter to eNeura re
  5. ^ a b Melkerson, MN (2008-12-16). "Special Premarket 510(k) Notification for NeuroStar® TMS Therapy System for Major Depressive Disorder" (pdf).  
  6. ^ a b c d e f g h i j k l m n o p q r s t u v w x Lefaucheur, JP; et al. (2014). "Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)". Clinical Neurophysiology 125 (11): 2150–2206.  
  7. ^ a b George, MS; Post, RM (2011). "Daily Left Prefrontal Repetitive Transcranial Magnetic Stimulation for Acute Treatment of Medication-Resistant Depression". American Journal of Psychiatry 168 (4): 356–364.  
    (6) Gaynes BN, Lux L, Lloyd S, Hansen RA, Gartlehner G, Thieda P, Brode S, Swinson Evans T, Jonas D, Crotty K, Viswanathan M, Lohr KN,  
  8. ^ a b c d e f g h i j k Rossi S, et al. (Dec 2009). "Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research". Clin Neurophysiol 120 (12): 2008–39.  
  9. ^ a b Duecker, F.; Sack, A. T. (2015). "Rethinking the role of sham TMS". Frontiers in Psychology 6.  
  10. ^ Rossini, P; Rossi, S (2007). "Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential". Neurology 68 (7): 484–488.  
  11. ^ a b Dimyan, MA; Cohen, LG (2009). "Contribution of Transcranial Magnetic Stimulation to the Understanding of Functional Recovery Mechanisms After Stroke". Neurorehabilitation and Neural Repair 24 (2): 125–135.  
  12. ^ a b Nowak, D; Bösl, K; Podubeckà, J; Carey, J (2010). "Noninvasive brain stimulation and motor recovery after stroke". Restorative Neurology and Neuroscience 28 (4): 531–544.  
  13. ^ Kujirai, T.; Caramia, M. D.; Rothwell, J. C.; Day, B. L.; Thompson, P. D.; Ferbert, A.; Wroe, S.; Asselman, P.; Marsden, C. D. (1993). "Corticocortical inhibition in human motor cortex". The Journal of physiology 471: 501–519.  
  14. ^ Berlim, MT; Van den Eynde, F; Jeff Daskalakis, Z (March 2013). "Clinically meaningful efficacy and acceptability of low-frequency repetitive transcranial magnetic stimulation (rTMS) for treating primary major depression: a meta-analysis of randomized, double-blind and sham-controlled trials.". Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 38 (4): 543–51.  
  15. ^ The Royal Australian and New Zealand College of Psychiatrists. (2013) Position Statement 79. Repetitive Transcranial Magnetic Stimulation. Practice and Partnerships Committee
  16. ^ Bersani FS, et al. (Jan 2013). "Deep transcranial magnetic stimulation as a treatment for psychiatric disorders: a comprehensive review". Eur Psychiatry 28 (1): 30–9.  
  17. ^ Dougall, N; Maayan, N; Soares-Weiser, K; McDermott, LM; McIntosh, A (20 August 2015). "Transcranial magnetic stimulation (TMS) for schizophrenia.". The Cochrane database of systematic reviews 8: CD006081.  
  18. ^ Li, H; Wang, J; Li, C; Xiao, Z (Sep 17, 2014). "Repetitive transcranial magnetic stimulation (rTMS) for panic disorder in adults.". The Cochrane database of systematic reviews 9: CD009083.  
  19. ^ Martin, JL; Barbanoj, MJ; Pérez, V; Sacristán, M (2003). "Transcranial magnetic stimulation for the treatment of obsessive-compulsive disorder.". The Cochrane database of systematic reviews (3): CD003387.  
  20. ^ Fitzgerald, PB; Daskalakis, ZJ (2013). "7. rTMS-Associated Adverse Events". Repetitive Transcranial Magnetic Stimulation for Depressive Disorders. Berlin Heidelberg: Springer-Verlag. pp. 81–90.   At Google Books.
  21. ^ Nauczyciel, C; Hellier, P; Morandi, X; Blestel, S; Drapier, D; Ferre, JC; Barillot, C; Millet, B (30 April 2011). "Assessment of standard coil positioning in transcranial magnetic stimulation in depression". Psychiatry Research 186 (2-3): 232–8.  
  22. ^ http://www.nexstim.com/news-and-events/press-releases/press-releases-archive/fda-clears-nexstim-s-navigated-brain-stimulation-for-non-invasive-cortical-mapping-prior-to-neurosurgery/. 
  23. ^ http://www.businesswire.com/news/home/20120611005730/en/Nexstim-Announces-FDA-Clearance-NexSpeech%C2%AE-%E2%80%93-Enabling#.VGm4MGNjmnw/. 
  24. ^ (July 2015)FDA 510K
  25. ^ Michael Drues, for Med Device Online. 5 February 2014 Secrets Of The De Novo Pathway, Part 1: Why Aren't More Device Makers Using It?
  26. ^ (1) Anthem (2013-04-16). "Medical Policy: Transcranial Magnetic Stimulation for Depression and Other Neuropsychiatric Disorders". Policy No. BEH.00002. Anthem. Archived from the original on 2013-12-11. Retrieved 2013-12-11. 
    (2) Health Net (March 2012). "National Medical Policy: Transcranial Magnetic Stimulation". Policy Number NMP 508. Health Net. Archived from the original (PDF) on 2012-10-11. Retrieved 2012-09-05. 
    (3) Blue Cross Blue Shield of Nebraska (2011-05-2011). "Medical Policy Manual". Section IV.67. Blue Cross Blue Shield of Nebraska. Archived from the original (PDF) on 2012-10-11. 
    (4) Blue Cross Blue Shield of Rhode Island (2012-05-15). "Medical Coverage Policy: Transcranial Magnetic Stimulation for Treatment of Depression and Other Psychiatric/Neurologic Disorders". Blue Cross Blue Shield of Rhode Island. Archived from the original (PDF) on 2012-10-11. Retrieved 2012-09-05. 
  27. ^  
  28. ^ (1)  
    (2)   (3)
     
  29. ^ "Medicare Administrative Contractors".  
  30. ^ (1) NHIC, Corp. (2013-10-24). "Local Coverage Determination (LCD) for Repetitive Transcranial Magnetic Stimulation (rTMS) (L32228)".  
    (2) "Important Treatment Option for Depression Receives Medicare Coverage". Press Release. PBN.com: Providence Business News. 2012-03-30. Archived from the original on 2012-10-11. Retrieved 2012-10-11. 
    (3) The Institute for Clinical and Economic Review (June 2012). "Coverage Policy Analysis: Repetitive Transcranial Magnetic Stimulation (rTMS)". The New England Comparative Effectiveness Public Advisory Council (CEPAC). Archived from the original (PDF) on 2013-12-11. Retrieved 2013-12-11. 
    (4) "Transcranial Magnetic Stimulation Cites Influence of New England Comparative Effectiveness Public Advisory Council (CEPAC)".  
  31. ^ National Government Services, Inc. (2013-10-25). "Local Coverage Determination (LCD): Transcranial Magnetic Stimulation (L32038)".  
  32. ^ Novitas Solutions, Inc. (2013-12-04). "LCD L32752 - Transcranial Magnetic Stimulation for Depression". Contractor's Determination Number L32752.  
  33. ^ Novitas Solutions, Inc. (2013-12-05). "LCD L33660 - Transcranial Magnetic Stimulation (TMS) for the Treatment of Depression". Contractor's Determination Number L33660.  
  34. ^ NICE About NICE: What we do
  35. ^ a b "Transcranial magnetic stimulation for severe depression (IPG242)". London, England: National Institute for Health and Clinical Excellence. 2011-03-04. 
  36. ^ "Transcranial magnetic stimulation for treating and preventing migraine". London, England: National Institute for Health and Clinical Excellence. January 2014. 
  37. ^ Cacioppo, JT; Tassinary, LG; Berntson, GG., ed. (2007). Handbook of psychophysiology (3rd ed.). New York: Cambridge Univ. Press. p. 121.  
  38. ^ "Brain Stimulation Therapies".  
  39. ^ (1) Zangen, A.; Roth, Y.; Voller, B.; Hallett, M. (2005). "Transcranial magnetic stimulation of deep brain regions: Evidence for efficacy of the H-Coil". Clinical Neurophysiology 116 (4): 775–779.  
    (2) Huang, YZ; Sommer, M; Thickbroom, G; Hamada, M; Pascual-Leonne, A; Paulus, W; Classen, J; Peterchev, AV; Zangen, A; Ugawa, Y (2009). "Consensus: New methodologies for brain stimulation". Brain Stimulation 2 (1): 2–13.  
  40. ^ a b V. Walsh and A. Pascual-Leone, "Transcranial Magnetic Stimulation: A Neurochronometrics of Mind." Cambridge, Massachusetts: MIT Press, 2003.
  41. ^  
  42. ^ Fitzgerald, P; Fountain, S; Daskalakis, Z (2006). "A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition". Clinical Neurophysiology 117 (12): 2584–2596.  
  43. ^ Wassermann, EM; Wang, B; Zeffiro, TA; Sadato, N; Pascual-Leone, A; Toro, C; Hallett, M (1996). "Locating the Motor Cortex on the MRI with Transcranial Magnetic Stimulation and PET". NeuroImage 3 (1): 1–9.  
  44. ^ Morioka T., Yamamoto T., Mizushima A., Tombimatsu S., Shigeto H., Hasuo K., Nishio S., Fujii K., Fukui M. (1995). "Comparison of magnetoencephalography, functional MRI, and motor evoked potentials in the localization of the sensory-motor cortex". Neurol. Res. 17 (5): 361–367. 
  45. ^ Terao, Y; Ugawa, Y; Sakai, K; Miyauchi, S; Fukuda, H; Sasaki, Y; Takino, R; Hanajima, R; Furubayashi, T; püTz, B; Kanazawa, I (1998). "Localizing the site of magnetic brain stimulation by functional MRI". Experimental Brain Research 121 (2): 145.  
  46. ^ Riehl M (2008). "TMS Stimulator Design". In Wassermann EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH. Oxford Handbook of Transcranial Stimulation. Oxford: Oxford University Press. pp. 13–23, 25–32.  
  47. ^ Roth, BJ; MacCabee, PJ; Eberle, LP; Amassian, VE; Hallett, M; Cadwell, J; Anselmi, GD; Tatarian, GT (1994). "In vitro evaluation of a 4-leaf coil design for magnetic stimulation of peripheral nerve". Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section 93 (1): 68–74.  
  48. ^ http://www.scholarpedia.org/article/Transcranial_magnetic_stimulation
  49. ^ Barker, AT; Jalinous, R; Freeston, IL (1985). "Non-Invasive Magnetic Stimulation of Human Motor Cortex". The Lancet 325 (8437): 1106–1107.  
  50. ^ Merton, PA; Morton, HB (1980). "Stimulation of the cerebral cortex in the intact human subject". Nature 285 (5762): 227.  
  51. ^ (1) Martin, PI; Naeser, MA; Ho, M; Treglia, E; Kaplan, E; Baker, EH; Pascual-Leone, A (2009). "Research with Transcranial Magnetic Stimulation in the Treatment of Aphasia". Current Neurology and Neuroscience Reports 9 (6): 451–458.  
    (2) Corti, M; Patten, C; Triggs, W (2012). "Repetitive Transcranial Magnetic Stimulation of Motor Cortex after Stroke". American Journal of Physical Medicine & Rehabilitation 91 (3): 254–270.  
  52. ^ Kleinjung, T; Vielsmeier, V; Landgrebe, M; Hajak, G; Langguth, B (2008). "Transcranial magnetic stimulation: a new diagnostic and therapeutic tool for tinnitus patients". The international tinnitus journal 14 (2): 112–8.  
  53. ^ Lefaucheur, JP (2009). "Treatment of Parkinson’s disease by cortical stimulation". Expert Review of Neurotherapeutics 9 (12): 1755–1771.  
    (2) Arias-Carrión, O (2008). "Basic mechanisms of rTMS: Implications in Parkinson's disease". International Archives of Medicine 1 (1): 2.  
  54. ^ Nizard J; Lefaucher J-P; Helbert M; de Chauvigny E; Nguyen J-P (2012). "Non-invasive stimulation therapies for the treatment of chronic pain". Discovery Medicine 14 (74): 21–31.  
  55. ^ (1) Osuch, EA; Benson, BE; Luckenbaugh, DA; Geraci, M; Post, RM; McCann, U (2009). "Repetitive TMS combined with exposure therapy for PTSD: A preliminary study". Journal of Anxiety Disorders 23 (1): 54–59.  
    (2) Watts, BV; Landon, B; Groft, A; Young-Xu, Y (2012). "A sham controlled study of repetitive transcranial magnetic stimulation for posttraumatic stress disorder". Brain Stimulation 5 (1): 38–43.  
  56. ^ "Transcranial magnetic brain stimulation: Therapeutic promises and scientific gaps". Pharmacology 133: 98–107.  
  57. ^ "Thermal and Mechanical Analysis of Novel Transcranial Magnetic Stimulation Coil for Mice". IEEE Transactions on Magnetics 50: 1–5.  
  58. ^ Marangell, LB; Martinez, M; Jurdi, RA; Zboyan, H (2007). "Neurostimulation therapies in depression: a review of new modalities". Acta Psychiatrica Scandinavica 116 (3): 174–181.  
  59. ^ Brunoni, A. R.; Lopes, M.; Kaptchuk, T. J.; Fregni, F. (2009). Hashimoto, Kenji, ed. "Placebo Response of Non-Pharmacological and Pharmacological Trials in Major Depression: A Systematic Review and Meta-Analysis". PLoS ONE 4 (3): e4824.  
  60. ^ Broadbent, H. J.; Van Den Eynde, F.; Guillaume, S.; Hanif, E. L.; Stahl, D.; David, A. S.; Campbell, I. C.; Schmidt, U. (2011). "Blinding success of rTMS applied to the dorsolateral prefrontal cortex in randomised sham-controlled trials: A systematic review". World Journal of Biological Psychiatry 12 (4): 240.  

Further reading

  • Wassermann, EM; Epstein, CM; Ziemann, U; Walsh, V; Paus, T; Lisanby, SH (2008). Oxford Handbook of Transcranial Stimulation (Oxford Handbooks).  
  • Freeston, I; Barker, A (2007). "Transcranial magnetic stimulation". Scholarpedia 2 (10): 2936.  

External links

  • Stuttering Triggered by Transcranial Magnetic Stimulation (video)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.