World Library  
Flag as Inappropriate
Email this Article

S phase

Article Id: WHEBN0001215494
Reproduction Date:

Title: S phase  
Author: World Heritage Encyclopedia
Language: English
Subject: Cell cycle, Meiosis, Cytarabine, Cell cycle checkpoint, Postreplication checkpoint
Collection: Cell Cycle
Publisher: World Heritage Encyclopedia

S phase

S-phase (synthesis phase) is the part of the Xenopus laevis embryos and budding yeast relevant to higher organisms.


  • S Phase Regulation 1
  • DNA Replication 2
  • DNA Damage 3
  • See also 4
  • References 5

S Phase Regulation

The G1/S transition is a major checkpoint in the regulation of the cell cycle. S Phase: To produce two similar daughter cells, the complete DNA instructions in the cell must be duplicated. DNA replication occurs during this S (synthesis) phase. Depending on levels of nutrients, energy and external factors, cells must decide to enter the cell cycle or move into a non-dividing state known as G0 phase. This transition, as with all of the major checkpoint transitions in the cell cycle, is signaled by cyclins and cyclin dependent kinase (CDKs). The pulse of G1/S cyclins causes CLN3-Cdk1 to activate Cln1/2, (Start point (yeast)) as well as Clb5/6 at the initiation of S-phase. This pathway contains 2 positive feedback loops, allowing for rapid, unidirectional movement into S-phase. Redundant pathways like this are not uncommon because they allow for tuning the output of the system and often lead to faster genetic evolution.[1]

DNA Replication

The major event in S-phase is DNA replication. The goal of this process is to create exactly two identical semi-conserved chromosomes. The cell prevents more than one replication from occurring by loading pre-replication complexes onto the DNA at replication origins during G1 phase which are dismantled in S-phase as replication begins. In synthesis, the enzyme helicase unwinds the DNA double helix, and the enzyme DNA polymerase re-binds free-floating nucleotides to the separate DNA single strands in accordance with the complementary base pairing rule. DNA synthesis can occur as fast as 2000 nucleotides/second [2] and must be as accurate as 2 wrong base in 1010 nucleotide additions.

DNA Damage

Damage to DNA is detected and fixed during S-phase. When the replication fork comes upon damaged DNA, ATR, a protein kinase is activated. This kinase initiates several complex downstream pathwaysG1-phase causing a halt in the initiation of new replication origins, prevention of mitosis and replication fork stabilization in order to keep the replication bubble open and DNA polymerase complex attached while the damage is being fixed.[3]

See also


  1. ^ Bell, S.P. and Dutta, A.: DNA replication in eukaryotic cells. Annu.Rev.Biochem. 2002,71:333-374.
  2. ^ Cooper, S. and Helmstetter, C. E. 1968 DNA synthesis during the division cycle of rapidly growing Escherichia coli. Journal of Molecular Biology, 31(3):507–518.
  3. ^ Branzei, D and Foiani, M.: The DNA damage response during DNA replication. Curr. Opin. Cell Biol. 2005, 17:568-575.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.