World Library  
Flag as Inappropriate
Email this Article

Oogamy

Article Id: WHEBN0003936535
Reproduction Date:

Title: Oogamy  
Author: World Heritage Encyclopedia
Language: English
Subject: Chytridiomycota, Diatom, Brown algae, Reproductive system, Anisogamy
Collection: Germ Cells, Reproductive System
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Oogamy

Oogamy in animals: small, motile sperm on the surface of an ovum

Oogamy is the familiar form of sexual reproduction. It is a form of anisogamy (heterogamy) in which the female gamete (e.g. egg cell) is significantly larger than the male gamete and is non-motile. The male gametes are typically highly motile spermatozoa competing for the fertilization of the immotile egg.

By contrast to isogamy, the gametes are specialized. The ovum contains nearly all of the materials that will be needed by the zygote after fertilization, but it typically cannot move. The sperm contains almost nothing but the male genetic contribution to the zygote, but it is usually tasked with all of the travel necessary to bring the respective gametes together. The prevalence of oogamy in higher animals leads to the conclusion that this specialization of the gametes results in their performing their respective tasks better and more efficiently than those tasks could be performed by generalist isogametes, particularly the ability to concentrate high-energy substances in a smaller number of ova.

Oogamy predominantly occurs in animals, but can also be found in many protists, certain orders of algae (Ochrophytes, Charophyceans), and some plants such as bryophytes, ferns, and some gymnosperms like cycads and ginkgo.

In some algae, most gymnosperms and all angiosperms, a variation of oogamy occurs where the sperm cells are non-motile as well.

It appears that isogamy was the first stage of sexual reproduction. In several lineages, this form of reproduction independently evolved to anisogamy with gametes of male and female types to oogamy. There is a good argument that this pattern was driven by the physical constraints on the mechanisms by which two gametes get together as required for sexual reproduction.[1]

References

  1. ^ Dusenbery, David B. (2009). Living at Micro Scale, Chapter 20. Harvard University Press, Cambridge, Mass. ISBN 978-0-674-03116-6.

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.