World Library  
Flag as Inappropriate
Email this Article

Hermit crab

Article Id: WHEBN0000275334
Reproduction Date:

Title: Hermit crab  
Author: World Heritage Encyclopedia
Language: English
Subject: Featured picture candidates/HermitCrab, Dardanus pedunculatus, Crustacean larvae, Pagurus, Coconut crab
Collection: Anomura, Hermit Crabs, Valanginian First Appearances
Publisher: World Heritage Encyclopedia

Hermit crab

Hermit crab
Temporal range: 136–0 Ma
Dardanus calidus
Scientific classification
Kingdom: Animalia
Phylum: Arthropoda
Subphylum: Crustacea
Class: Malacostraca
Order: Decapoda
Suborder: Pleocyemata
Infraorder: Anomura
Superfamily: Paguroidea
Latreille, 1802

Hermit crabs are decapod crustaceans of the superfamily Paguroidea.[1][2]

Most of the 1100 species possess an asymmetrical abdomen which is concealed in an empty gastropod shell carried around by the hermit crab.


  • Description 1
  • Biology 2
    • Shells and shell competition 2.1
    • Development and reproduction 2.2
  • Classification 3
  • Fossil record 4
  • As pets 5
  • References 6
  • External links 7


A hermit crab emerges from its shell
Outside its shell, the soft, curved abdomen of hermit crabs, such as Pagurus bernhardus, is vulnerable.

Most species have long, spirally curved abdomens, which are soft, unlike the hard, calcified abdomens seen in related crustaceans. The vulnerable abdomen is protected from predators by a salvaged empty seashell carried by the hermit crab, into which its whole body can retract.[3] Most frequently, hermit crabs use the shells of sea snails (although the shells of bivalves and scaphopods and even hollow pieces of wood and stone are used by some species).[4] The tip of the hermit crab's abdomen is adapted to clasp strongly onto the columella of the snail shell.[5]

Most species are aquatic and live in varying depths of salt water, from shallow reefs and shorelines to deep sea bottoms. Tropical areas host some terrestrial species, though even those have aquatic larvae and therefore need access to water for reproduction. Most hermit crabs are nocturnal.

A few species do not use a "mobile home" and inhabit immobile structures left by polychaete worms, vermetid gastropods, corals, and sponges.[4]


Shells and shell competition

Underwater photo of a hermit crab and gastropod shell
Hermit crabs fighting over a shell

A hermit crab retracted into a shell of Acanthina punctulata and using its claws to block the entrance

As hermit crabs grow, they require larger shells. Since suitable intact

  • Media related to at Wikimedia Commons
  • Animal Care/Land hermit crab at Wikibooks
  • Animal Care/Land hermit crab at Wikibooks

External links

  1. ^ a b Patsy McLaughlin & Michael Türkay (2011). R. Lemaitre & P. McLaughlin, ed. "Paguroidea". World Paguroidea & Lomisoidea database.  
  2. ^ a b Patsy A. McLaughlin, Tomoyuki Komai, Rafael Lemaitre & Dwi Listyo Rahayu (2010). Martyn E. Y. Low & S. H. Tan, ed. "Annotated checklist of anomuran decapod crustaceans of the world (exclusive of the Kiwaoidea and families Chirostylidae and Galatheidae of the Galatheoidea) - Chapter: Part I – Lithodoidea, Lomisoidea and Paguroidea" ( 
  3. ^ Ray W. Ingle (1997). "Hermit and stone crabs (Paguroidea)". Crayfishes, lobsters, and crabs of Europe: an illustrated guide to common and traded species.  
  4. ^ a b Jason D. Williams; John J. McDermott (2004). "Hermit crab biocoenoses: a worldwide review of the biodiversity and natural history of hermit crab associates" ( 
  5. ^ W. D. Chapple (2002). "Mechanoreceptors innervating soft cuticle in the abdomen of the hermit crab, Pagurus pollicarus".  
  6. ^ Elena Tricarico & Francesca Gherardi (2006). "Shell acquisition by hermit crabs: which tactic is more efficient?".  
  7. ^ Randi D. Rotjan, Jeffrey R. Chabot & Sara M. Lewis (2010). "Social context of shell acquisition in Coenobita clypeatus hermit crabs".  
  8. ^ Jennifer E. Angel (2000). "Effects of shell fit on the biology of the hermit crab Pagurus longicarpus (Say)".  
  9. ^ Douglas Harper. "Hermit". Online Etymology Dictionary. Retrieved March 26, 2010. 
  10. ^ Randi, D.; Rotjan, Jeffrey R. Chabot, and Sara M. Lewis (2010). "Social context of shell acquisition in Coenobita clypeatus hermit crabs". Behav. Ecol. (Oxford University Press) 21 (3): 639–646.  
  11. ^ Jabr, Ferris (5 June 2012). "On a Tiny Caribbean Island, Hermit Crabs Form Sophisticated Social Networks". Scientific American. Scientific American,. Retrieved 6 November 2014. 
  12. ^ Robert Sanders (October 26, 2012). "Hermit crabs socialize to evict their neighbors".  
  13. ^ A. Klicpera, Paul D. Taylor & H. Westphal (2013). "Bryoliths constructed by bryozoans in symbiotic associations with hermit crabs in a tropical heterozoan carbonate system, Golfe d'Arguin, Mauritania".  
  14. ^ P. Grubb (1971). "Ecology of terrestrial decapod crustaceans on Aldabra".  
  15. ^ H. J. Squires (1996). , from the plankton (Crustacea, Decapoda)"Pagurus arcuatus"Larvae of the hermit crab, (PDF).  
  16. ^ J. D. MacDonald, R. B. Pike & D. I. Williamson (1957). "Larvae of the British Species of Diogenes, Pagurus, Anapagurus,and Lithodes".  
  17. ^ C. W. Cunningham, N. W. Blackstone & L. W. Buss (1992). "Evolution of king crabs from hermit crab ancestors".  
  18. ^ C. L. Morrison, A. W. Harvey, S. Lavery, K. Tieu, Y. Huang & C. W. Cunningham (2001). "Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form" (PDF).  
  19. ^ Ling Ming Tsang, Tin-Yam Chan, Shane T. Ahyong & Ka Hou Chu (2011). "Hermit to king, or hermit to all: multiple transitions to crab-like forms from hermit crab ancestors".  
  20. ^ Patsy A. McLaughlin & Rafael Lemaitre (1997). "Carcinization in the anomura – fact or fiction? I. Evidence from adult morphology".   PDF
  21. ^ Sammy De Grave, N. Dean Pentcheff, Shane T. Ahyong; et al. (2009). "A classification of living and fossil genera of decapod crustaceans" (PDF).  
  22. ^ René H. B. Fraaije, Adiël A. Klompmaker & Pedro Artal (2012). "New species, genera and a family of hermit crabs (Crustacea, Anomura, Paguroidea) from a mid-Cretaceous reef of Navarra, northern Spain".  
  23. ^ René H. Fraaije (2003). "The oldest in situ hermit crab from the Lower Cretaceous of Speeton, UK".  
  24. ^ Pet Smart Veterinarians (2006). "Land Hermit Crab Care Guide". Pet Smart. Archived from the original on 2011-06-11. 
  25. ^ Linda Lombardi (July 22, 2008). "Hermit crabs don’t have to fade away; with proper care they can have long life".  
  26. ^ Stacy (February 21, 2013). "How old is my hermit crab?". The Crabstreet Journal. Retrieved April 28, 2013. 


Hermit crabs are often seen as a "throwaway pet" that would live only a few months, but species such as Coenobita clypeatus have a 23-year lifespan if properly treated,[24] and some have lived longer than 32 years.[25][26]

Several marine species of hermit crabs are common in the marine aquarium trade. Of the approximately 15 terrestrial species in the world, the following are commonly kept as pets: Caribbean hermit crab (Coenobita clypeatus), Australian land hermit crab (Coenobita variabilis), and the Ecuadorian hermit crab (Coenobita compressus). Other species, such as Coenobita brevimanus, Coenobita rugosus, Coenobita perlatus or Coenobita cavipes, are less common but growing in availability and popularity as pets.

Photo of four hermit crabs.
Four hermit crabs in an aquarium

As pets

The fossil record of in situ hermit crabs using gastropod shells stretches back to the Late Cretaceous. Before that time, at least some hermit crabs used ammonites' shells instead, as shown by a specimen of Palaeopagurus vandenengeli from the Speeton Clay, Yorkshire, UK from the Lower Cretaceous.[23]

Fossil record

Hermit crabs are more closely related to squat lobsters and porcelain crabs than they are to true crabs (Brachyura). However, the relationship of king crabs to the rest of Paguroidea is a highly contentious topic. Many studies based on physical characteristics, genetic information, and combined data, support the longstanding hypothesis that the king crabs in the family Lithodidae are derived hermit crabs and should be classified as a family within Paguroidea.[16][17][18][19] Other researchers have challenged this, asserting that the Lithodidae (king crabs) should be placed with the Hapalogastridae in a separate superfamily Lithodoidea.[20][21] Six families are formally recognized in the superfamily Paguroidea,[1] containing around 1100 species in total in 120 genera.[2]


The young develop in stages, with the first two (the nauplius and protozoea) occurring inside the egg. Most hermit crab larvae hatch at the third stage, the zoea. In this larval stage, the crab has several long spines, a long, narrow abdomen, and large fringed antennae. Several zoeal moults are followed by the final larval stage, the megalopa.[15]

Hermit crab species range in size and shape, from species with a carapace only a few millimetres long to Coenobita brevimanus, which can live 12–70 years and can approach the size of a coconut. The shell-less hermit crab Birgus latro (coconut crab) is the world's largest terrestrial invertebrate.[14]

Development and reproduction

For some larger marine species, supporting one or more sea anemones on the shell can scare away predators. The sea anemone benefits, because it is in position to consume fragments of the hermit crab's meals. Other very close symbiotic relationships are known from encrusting bryozoans and hermit crabs forming bryoliths.[13]

As the hermit crab grows in size, it must find a larger shell and abandon the previous one. This habit of living in a second-hand shell gives rise to the popular name "hermit crab", by analogy to a hermit who lives alone.[9] Several hermit crab species, both terrestrial and marine, have been observed forming a vacancy chain to exchange shells.[10] When an individual crab finds a new empty shell it will leave its own shell and inspect the vacant shell for size. If the shell is found to be too large, the crab goes back to its own shell and then waits by the vacant shell for anything up to 8 hours. As new crabs arrive they also inspect the shell and, if it is too big, wait with the others, forming a group of up to 20 individuals, holding onto each other in a line from the largest to the smallest crab. As soon as a crab arrives that is the right size for the vacant shell and claims it, leaving its old shell vacant, then all the crabs in the queue swiftly exchange shells in sequence, each one moving up to the next size.[11] Hermit crabs often "gang up" on one of their species with what they perceive to be a better shell, and pry its shell away from it before competing for it until one takes it over.[12]

[8] Hermit crabs with too-small shells cannot grow as fast as those with well-fitting shells, and are more likely to be eaten if they cannot retract completely into the shell.[7] Hermit crabs kept together may fight or kill a competitor to gain access to the shell they favour. However, if the crabs vary significantly in size, the occurrence of fights over empty shells will decrease or remain nonexistent.[6]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.