World Library  
Flag as Inappropriate
Email this Article

Somatic embryogenesis

Article Id: WHEBN0031570900
Reproduction Date:

Title: Somatic embryogenesis  
Author: World Heritage Encyclopedia
Language: English
Subject: Callus (cell biology), Embryo rescue, Cell culture, Seedless fruit, Tryptophol
Publisher: World Heritage Encyclopedia

Somatic embryogenesis

Somatic embryogenesis is a process where a plant or embryo is derived from a single somatic cell or group of somatic cells. Somatic embryos are formed from plant cells that are not normally involved in the development of embryos, i.e. ordinary plant tissue. No endosperm or seed coat is formed around a somatic embryo. Applications of this process include: clonal propagation of genetically uniform plant material; elimination of viruses; provision of source tissue for genetic transformation; generation of whole plants from single cells called protoplasts; development of synthetic seed technology. Cells derived from competent source tissue are cultured to form an undifferentiated mass of cells called a callus. Plant growth regulators in the tissue culture medium can be manipulated to induce callus formation and subsequently changed to induce embryos to form from the callus. The ratio of different plant growth regulators required to induce callus or embryo formation varies with the type of plant.[1] Somatic embryos are mainly produced in vitro and for laboratory purposes, using either solid or liquid nutrient media which contain plant growth regulators (PGR’s). The main PGRs used are auxins but can contain cytokinin in a smaller amount.[2] Shoots and roots are monopolar while somatic embryos are bipolar, allowing them to form a whole plant without culturing on multiple media types. Somatic embryogenesis has served as a model to understand the physiological and biochemical events that occur plant developmental processes as well as a component to biotechnological advancement.[3] The first documentation of somatic embryogenesis was by Steward et al. in 1958 and Reinert in 1959 with carrot cell suspension cultures.[4][5]

Switchgrass somatic embryos

Direct and indirect embryogenesis

Somatic embryogenesis has been described to occur in two ways: directly or indirectly.[6] Direct embryogenesis occurs when embryos are started directly from explant tissue creating an identical clone. Indirect embryogenesis occurs when explants produced undifferentiated, or partially differentiated, cells (often referred to as callus) which then is maintained or differentiated into plant tissues such as leaf, stem, or roots.

Plant regeneration via somatic embryogenesis

Plant regeneration via somatic embryogenesis occurs in five steps: initiation of embryogenic cultures, proliferation of embryogenic cultures, prematuration of somatic embryos, maturation of somatic embryos and plant development on nonspecific media. Initiation and proliferation occur on a medium rich in auxin, which induces differentiation of localized meristematic cells. The auxin typically used is 2,4-D. Once transferred to a medium with low or no auxin, these cells can then develop into mature embryos. Germination of the somatic embryo can only occur when it is mature enough to have functional root and shoot apices.[2]

Factors influencing somatic embryogenesis

Factors and mechanisms controlling cell differentiation in somatic embryos are relatively ambiguous. Certain compounds excreted by plant tissue cultures and found in culture media have been shown necessary to coordinate cell division and morphological changes.[7] These compounds have been identified by Chung et al.[8] as various polysaccharides, amino acids, growth regulators, vitamins, low molecular weight compounds and polypeptides. Several signaling molecules known to influence or control the formation of somatic embryos have been found and include extracellular proteins, arabinogalactan proteins and lipochitooligosaccharides. Temperature and lighting can also affect the maturation of the somatic embryo.

Uses of somatic embryogenesis

Problems associated with somatic embryogenesis

  • High chance of mutations
  • Difficult method
  • Loss of regenerative ability
  • High percentage of albino shoots during regeneration
  • Not possible with all plant species and must be optimized for each species and its use

Tracking and fate maps

Understanding the formation of a somatic embryo through establishment of morphological and molecular markers is important for construction of a fate map. The fate map is the foundation in which to build further research and experimentation. Two methods exist to construct a fate map: synchronous cell-division and time-lapse tracking. The latter typically works more consistently because of cell-cycle-altering chemicals and centrifuging involved in synchronous cell-division.[10]


Embryo development in angiosperms is divided into several steps. The zygote is divided asymmetrically forming a small apical cell and large basal cell. The organizational pattern is formed in the globular stage and the embryo then transitions to the cotyledonary stage.[11] Embryo development differs in monocots and dicots. Dicots pass through the globular, heart-shaped, and torpedo stages while monocots pass through globular, scuetellar, and coleoptilar stages.[12]

Many culture systems induce and maintain somatic embryogenesis by continuous exposure to 2,4-dichlorophenoxyacetic acid. Abscisic acid has been reported to induce somatic embryogenesis in seedlings. After callus formation, culturing on a low auxin or hormone free media will promote somatic embryo growth and root formation. In monocots, embryogenic capability is usually restricted to tissues with embryogenic or meristematic origin. Somatic cells of monocots differentiate quickly and then lose mitotic and morphogenic capability. Differences of auxin sensitivity in embryogenic callus growth between different genotypes of the same species show how variable auxin responses can be.[13]



Embryo development in auxin and cytokinin. Gradual removal of auxin and cytokinin and introduction of abscisic acid (ABA) will allow an embryo to form.[10] Using somatic embryogenesis has been considered for mass production of vegetatively propagated pine clones and cryopreservation of germplasm. However, the use of this technology for reforestation and breeding of pine trees is in its infancy.[15]

See also


  1. ^ Plant Tissue Culture
  2. ^ a b E.F. George et al (eds.), Plant Propagation by Tissue Culture 3rd Edition, 335-354.
  3. ^ Quiroz-Figueroa, F. R., Rojas-Herrera, R., Galaz-Avalos, R. M., and Loyola- Vargas, V. M. 2006. Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss. Org. Cult. 86: 285–301.
  4. ^ Steward, F.C., Mapes, M.O., and Smlth, J. (1958). Growth and organized development of cultured cells. I. Growth and division of freely suspended cells. Am. J. Bot. 45, 693-703.
  5. ^ Reinert J (1959) Uber die kontrolle der morphogenese und die induktion von adventivembryonen an gew- ebekulturen aus karotten. Planta 53:318–333
  6. ^ Sharp et al. (1980). In: Horticultural Reviews,Vol. 2. (janick, J., ed.). AVI Publishing Co, Westport, Conn., USA, p. 268.
  7. ^ Warren, G.S., Fowler, M.W. 1981. Physiological interactions during the initial stages of embryogenesis in cultures of Daucus carota L. New Phytol 87:481-486.
  8. ^ Chung, W., Pedersen, H., Chin, C-K. 1992. Enhanced somatic embryo production by conditioned media in cell suspension cultures of Daucus carota. Biotechnol Lett 14:837-840.
  9. ^ Jiménez V.M., Guevara E., Herrera J. and Bangerth F. 2001. Endogenous hormone levels in habituated nucellar Citrus callus during the initial stages of regeneration. Plant Cell Rep. 20: 92–100.
  10. ^ a b c d Yang, Xiyan and Zhang, Xianlong(2010) 'Regulation of Somatic embryogenesis in Higher Plants', Critical Reviews in Plant Sciences, 29: 1, 36 — 57
  11. ^ a b Von Arnold S, Sabala I, Bozhkov P, Dyachok J and Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org. Cult. 69: 233–249
  12. ^ Jime ́nez VM, Thomas C (2005) Participation of plant hormones in determination and progression of somatic embryogenesis. in: Mujib A, Šamaj J (eds) Somatic embryogenesis. Springer, Berlin, pp 103–118.
  13. ^ Fehér, Attila. Why somatic plant cells start to form embryos? In: Mujid, Abdul and Samaj, Josef. eds. Somatic Embryogenesis. Plant Cell Monographs, Springer; Berlin/Heidelberg, 2005, vol. 2, p. 85-101.
  14. ^ Toonen, M. A. J., Hendriks, T., Schmidt, E. D. L., Verhoeven, H. A., van Kammen, A., and De Vries, S. C. 1994. Description of somatic-embryo- forming single cells in carrot suspension cultures employing video cell tracking. Planta 194: 565–572.
  15. ^ Häggman H.; Vuosku J.; Sarjala T.; Jokela A.; Niemi K. Somatic Embryogenesis of pine species: from functional genomics to plantation forestry. Dig. Plant Cell Monogr. 2: 119–140; 2006.

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.