World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0002192622
Reproduction Date:

Title: Heliometer  
Author: World Heritage Encyclopedia
Language: English
Subject: Yale University Observatory, Stellar parallax, Koenigsberg Observatory, Helioscope, Spectrohelioscope
Publisher: World Heritage Encyclopedia


Heliometer at the Kuffner observatory (Vienna, Austria)

A heliometer (from Greek ἥλιος hḗlios "sun" and measure) is an instrument originally designed for measuring the variation of the sun's diameter at different seasons of the year, but applied now to the modern form of the instrument which is capable of much wider use.[1]

The basic concept is to introduce a split element into a telescope's optical path so as to produce a double image. If one element is moved using a screw micrometer, precise angle measurements can be made. The simplest arrangement is to split the object lens in half, with one half fixed and the other attached to the micrometer screw and slid along the cut diameter. To measure the diameter of the sun, for example, the micrometer is first adjusted so that the two images of the solar disk coincide (the "zero" position where the split elements form essentially a single element). The micrometer is then adjusted so that diametrically opposite sides of the two images of the solar disk just touch each other. The difference in the two micrometer readings so obtained is the (angular) diameter of the sun. Similarly, a precise measurement of the apparent separation between two nearby stars, A and B, is made by first superimposing the two images of the stars and then adjusting the double image so that star A in one image coincides with star B in the other. The difference in the two micrometer readings so obtained is the apparent separation or angular distance between the two stars.

A lens cut in two
Double image of the solar disk

The first application of the divided object-glass and the employment of double images in astronomical measures is due to Servington Savary from Exeter in 1743. Pierre Bouguer, in 1748, originated the true conception of measurement by double image without the auxiliary aid of a filar micrometer, that is by changing the distance between two object-glasses of equal focus. John Dollond, in 1754, combined Savary's idea of the divided object-glass with Bouguer's method of measurement, resulting in the construction of the first really practical heliometers. As far as we can ascertain, Joseph von Fraunhofer, some time not long before 1820, constructed the first heliometer with an achromatic divided object-glass, i.e. the first heliometer of the modern type.

The first successful measurements of stellar parallax (to determine the distance to a star) were made by Friedrich Bessel in 1838 for the star 61 Cygni using a Fraunhofer heliometer.[2] This was the 6.2-inch (157.5 mm) aperture Fraunhofer heliometer at Königsberg Observatory built by Joseph von Fraunhofer's firm, though he did not live to see it delivered to Bessel.[3][4] Although the heliometer was difficult to use, it had certain advantages for Bessel including a wider field of view compared to other great refractors of the period, and overcame atmospheric turbulence in measurements compared to a filar micrometer.[4]


  1. ^ "The Encyclopaedia Britannica : a dictionary of arts, sciences, literature and general information". Retrieved 16 August 2015. 
  2. ^ Zeilik & Gregory 1998, p. 44.
  3. ^ "Photos". Retrieved 16 August 2015. 
  4. ^ a b "Parallax". Retrieved 16 August 2015. 


  • Hirshfeld, Alan w. (2001). Parallax: The Race to Measure the Cosmos. New York: W. H. Freeman.  
  • Zeilik, Michael A.; Gregory, Stephan A. (1998). Introductory Astronomy & Astrophysics (4th ed.). Saunders College Publishing. .  
  • Volume 13, pp. 224–230  
  • Willach, Rolf. "The Heliometer: Instrument for Gauging Distances in Space." Journal of the Antique Telescope Society, number 26, pp. 5–16 (2004).

External links

  • Photos from the largest heliometer in the world (Kuffner-Observatory, Vienna)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.