This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0000244107 Reproduction Date:
Euclid's Elements (Ancient Greek: Στοιχεῖα Stoicheia) is a mathematical and geometric treatise consisting of 13 books written by the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt c. 300 BC. It is a collection of definitions, postulates (axioms), propositions (theorems and constructions), and mathematical proofs of the propositions. The thirteen books cover Euclidean geometry and the ancient Greek version of elementary number theory. The work also includes an algebraic system that has become known as geometric algebra, which is powerful enough to solve many algebraic problems,^{[1]} including the problem of finding the square root of a number.^{[2]} The Elements is the second oldest extant Greek mathematical treatises after Autolycus' On the Moving Sphere,^{[3]} and it is the oldest extant axiomatic deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science. According to Proclus the term "element" was used to describe a theorem that is all-pervading and helps furnishing proofs of many other theorems. The word 'element' is in the Greek language the same as 'letter'. This suggests that theorems in the Elements should be seen as standing in the same relation to geometry as letters to language. Later commentators give a slightly different meaning to the term 'element', emphasizing how the propositions have progressed in small steps, and continued to build on previous propositions in a well-defined order.^{[4]}
Euclid's Elements has been referred to as the most successful^{[5]}^{[6]} and influential^{[7]} textbook ever written. Being first set in type in Venice in 1482, it is one of the very earliest mathematical works to be printed after the invention of the printing press and was estimated by Carl Benjamin Boyer to be second only to the Bible in the number of editions published,^{[7]} with the number reaching well over one thousand.^{[8]} For centuries, when the quadrivium was included in the curriculum of all university students, knowledge of at least part of Euclid's Elements was required of all students. Not until the 20th century, by which time its content was universally taught through other school textbooks, did it cease to be considered something all educated people had read.^{[9]}
Scholars believe that the Elements is largely a collection of theorems proven by other mathematicians, supplemented by some original work.
Proclus (412 – 485 AD), a Greek mathematician who lived around seven centuries after Euclid, wrote in his commentary on the Elements: "Euclid, who put together the Elements, collecting many of Eudoxus' theorems, perfecting many of Theaetetus', and also bringing to irrefragable demonstration the things which were only somewhat loosely proved by his predecessors".
Pythagoras(c. 570 – c. 495 BCE) was probably the source for most of books I and II, Hippocrates of Chios (c. 470 – c. 410 BCE, not the better known Hippocrates of Kos) for book III, and Eudoxus of Cnidus (c. 408 – c. 355 BC) for book V, while books IV, VI, XI, and XII probably came from other Pythagorean or Athenian mathematicians.^{[11]} The Elements may have been based on an earlier textbook by Hippocrates of Chios, who also may have originated the use of letters to refer to figures.^{[12]}
In the fourth century AD, Theon of Alexandria produced an edition of Euclid which was so widely used that it became the only surviving source until François Peyrard's 1808 discovery at the Vatican of a manuscript not derived from Theon's. This manuscript, the Heiberg manuscript, is from a Byzantine workshop c. 900 and is the basis of modern editions.^{[13]} Papyrus Oxyrhynchus 29 is a tiny fragment of an even older manuscript, but only contains the statement of one proposition.
Although known to, for instance, Cicero, there is no extant record of the text having been translated into Latin prior to Boethius in the fifth or sixth century.^{[10]} The Arabs received the Elements from the Byzantines in approximately 760; this version was translated into Arabic under Harun al Rashid c. 800.^{[10]} The Byzantine scholar Arethas commissioned the copying of one of the extant Greek manuscripts of Euclid in the late ninth century.^{[14]} Although known in Byzantium, the Elements was lost to Western Europe until c. 1120, when the English monk Adelard of Bath translated it into Latin from an Arabic translation.^{[15]}
Copies of the Greek text still exist, some of which can be found in the Vatican Library and the Bodleian Library in Oxford. The manuscripts available are of variable quality, and invariably incomplete. By careful analysis of the translations and originals, hypotheses have been made about the contents of the original text (copies of which are no longer available).
Ancient texts which refer to the Elements itself, and to other mathematical theories that were current at the time it was written, are also important in this process. Such analyses are conducted by J. L. Heiberg and Sir Thomas Little Heath in their editions of the text.
Also of importance are the scholia, or annotations to the text. These additions, which often distinguished themselves from the main text (depending on the manuscript), gradually accumulated over time as opinions varied upon what was worthy of explanation or further study.
The Elements is still considered a masterpiece in the application of logic to mathematics. In historical context, it has proven enormously influential in many areas of science. Scientists Nicolaus Copernicus, Johannes Kepler, Galileo Galilei, and Sir Isaac Newton were all influenced by the Elements, and applied their knowledge of it to their work. Mathematicians and philosophers, such as Thomas Hobbes, Baruch Spinoza, Alfred North Whitehead, and Bertrand Russell, have attempted to create their own foundational "Elements" for their respective disciplines, by adopting the axiomatized deductive structures that Euclid's work introduced.
The austere beauty of Euclidean geometry has been seen by many in western culture as a glimpse of an otherworldly system of perfection and certainty. Abraham Lincoln kept a copy of Euclid in his saddlebag, and studied it late at night by lamplight; he related that he said to himself, "You never can make a lawyer if you do not understand what demonstrate means; and I left my situation in Springfield, went home to my father's house, and stayed there till I could give any proposition in the six books of Euclid at sight".^{[17]} Edna St. Vincent Millay wrote in her sonnet "Euclid alone has looked on Beauty bare", "O blinding hour, O holy, terrible day, When first the shaft into his vision shone Of light anatomized!". Einstein recalled a copy of the Elements and a magnetic compass as two gifts that had a great influence on him as a boy, referring to the Euclid as the "holy little geometry book".^{[18]}
The success of the Elements is due primarily to its logical presentation of most of the mathematical knowledge available to Euclid. Much of the material is not original to him, although many of the proofs are his. However, Euclid's systematic development of his subject, from a small set of axioms to deep results, and the consistency of his approach throughout the Elements, encouraged its use as a textbook for about 2,000 years. The Elements still influences modern geometry books. Further, its logical axiomatic approach and rigorous proofs remain the cornerstone of mathematics.
Books 1 through 4 deal with plane geometry:
Books 5 through 10 introduce ratios and proportions:
Books 11 through to 13 deal with spatial geometry:
Euclid's axiomatic approach and constructive methods were widely influential.
As was common in ancient mathematical texts, when a proposition needed proof in several different cases, Euclid often proved only one of them (often the most difficult), leaving the others to the reader. Later editors such as Theon often interpolated their own proofs of these cases.
Euclid's presentation was limited by the mathematical ideas and notations in common currency in his era, and this causes the treatment to seem awkward to the modern reader in some places. For example, there was no notion of an angle greater than two right angles,^{[19]} the number 1 was sometimes treated separately from other positive integers, and as multiplication was treated geometrically he did not use the product of more than 3 different numbers. The geometrical treatment of number theory may have been because the alternative would have been the extremely awkward Alexandrian system of numerals.^{[20]}
The presentation of each result is given in a stylized form, which, although not invented by Euclid, is recognized as typically classical. It has six different parts: First is the enunciation which states the result in general terms (i.e. the statement of the proposition). Then the setting-out, which gives the figure and denotes particular geometrical objects by letters. Next comes the definition or specification which restates the enunciation in terms of the particular figure. Then the construction or machinery follows. It is here that the original figure is extended to forward the proof. Then, the proof itself follows. Finally, the conclusion connects the proof to the enunciation by stating the specific conclusions drawn in the proof, in the general terms of the enunciation.^{[21]}
No indication is given of the method of reasoning that led to the result, although the Data does provide instruction about how to approach the types of problems encountered in the first four books of the Elements.^{[22]} Some scholars have tried to find fault in Euclid's use of figures in his proofs, accusing him of writing proofs that depended on the specific figures drawn rather than the general underlying logic, especially concerning Proposition II of Book I. However, Euclid's original proof of this proposition is general, valid, and does not depend on the figure used as an example to illustrate one given configuration.^{[23]}
Euclid's list of axioms in the Elements was not exhaustive, but represented the principles that were the most important. His proofs often invoke axiomatic notions which were not originally presented in his list of axioms. Later editors have interpolated Euclid's implicit axiomatic assumptions in the list of formal axioms.^{[24]}
For example, in the first construction of Book 1, Euclid used a premise that was neither postulated nor proved: that two circles with centers at the distance of their radius will intersect in two points.^{[25]} Later, in the fourth construction, he used superposition (moving the triangles on top of each other) to prove that if two sides and their angles are equal then they are congruent; during these considerations he uses some properties of superposition, but these properties are not described explicitly in the treatise. If superposition is to be considered a valid method of geometric proof, all of geometry would be full of such proofs. For example, propositions I.1 – I.3 can be proved trivially by using superposition.^{[26]}
Mathematician and historian W. W. Rouse Ball put the criticisms in perspective, remarking that "the fact that for two thousand years [the Elements] was the usual text-book on the subject raises a strong presumption that it is not unsuitable for that purpose."^{[27]}
It was not uncommon in ancient time to attribute to celebrated authors works that were not written by them. It is by these means that the apocryphal books XIV and XV of the Elements were sometimes included in the collection.^{[28]} The spurious Book XIV was probably written by Hypsicles on the basis of a treatise by Apollonius. The book continues Euclid's comparison of regular solids inscribed in spheres, with the chief result being that the ratio of the surfaces of the dodecahedron and icosahedron inscribed in the same sphere is the same as the ratio of their volumes, the ratio being
The spurious Book XV was probably written, at least in part, by Isidore of Miletus. This book covers topics such as counting the number of edges and solid angles in the regular solids, and finding the measure of dihedral angles of faces that meet at an edge.^{[28]}
Geometry emerged as an indispensable part of the standard education of the English gentleman in the eighteenth century; by the Victorian period it was also becoming an important part of the education of artisans, children at Board Schools, colonial subjects and, to a rather lesser degree, women. ... The standard textbook for this purpose was none other than Euclid's The Elements.
Epistemology, Computer science, Philosophy, Aesthetics, Metaphysics
Mathematics, Euclidean geometry, Number theory, Alexandria, Greek language
Circle, Topology, Euclid's Elements, Congruence (geometry), Geometry