World Library  
Flag as Inappropriate
Email this Article
 

Robert E. Horton

Robert Elmer Horton
Born May 18, 1875
Parma, Michigan
Died April 22, 1945
Nationality American
Fields ecologist
Known for hydrology
Robert Elmer Horton (May 18, 1875 - April 22, 1945) was an American ecologist and soil scientist, considered by many to be the father of modern hydrology.

Born in civil engineer. Rafter had commissioned a weir study, the results of which Horton analyzed and summarized. In 1900, he was appointed New York District Engineer of the United States Geological Survey.

During his studies of New York streams, Horton determined that the degree to which rainfall could reach the aquifer depended on a certain property of the soil, which he called infiltration capacity. He analyzed and separated the water cycle into the processes of infiltration, evaporation, interception, transpiration, overland flow, etc. Horton was the first to demarcate and label these now-familiar stages of the cycle.

Horton is well known for his study of maximum runoff and flood generation. His concept of maximum possible rainfall, limiting the effect of rainfall in specific regions, has had a major effect on meteorology. His studies of overland flow aided in the understanding of soil erosion and provided a scientific basis for soil conservation efforts.

Having realized early in his career that the physical character of terrain played a large role in determining runoff patterns, he resolved to isolate the physical factors affecting runoff and flood discharge. He believed these to include drainage density, channel slope, overland flow length, and other less important factors. However, late in his career, he began to advocate a very different mechanism of "hydrophysical" geomorphology, which he believed better explained his prior observations.

Horton detailed his theory in a landmark paper published in 1945, only a month before his death, in the Bulletin of the Geological Society of America. He summarized his conclusions with four laws: the law of stream numbers, the law of stream lengths, the limits of infiltration capacity, and the runoff-detention-storage relation. His results demonstrate that the salient factor in aqueous soil erosion is the minimum length of overland flow necessary to produce enough runoff to effect erosion. This seminal work may be considered the founding of modern [[stream chemistry

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.