World Library  
Flag as Inappropriate
Email this Article

Equatorial ring

Article Id: WHEBN0016926318
Reproduction Date:

Title: Equatorial ring  
Author: World Heritage Encyclopedia
Language: English
Subject: Hipparchus, Ancient Greek astronomy, Indian astronomy, Astrolabe, Astronomy in medieval Islam
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Equatorial ring

An equatorial ring

An equatorial ring was an astronomical instrument used in the Hellenistic world to determine the exact moment of the spring and autumn equinoxes. Equatorial rings were placed before the temples in Alexandria, in Rhodes, and perhaps in other places, for calendar purposes.

The easiest way to understand the use of an equatorial ring is to imagine a ring placed vertically in the east-west plane at the Earth's equator. At the time of the equinoxes, the Sun will rise precisely in the east, move across the zenith, and set precisely in the west. Throughout the day, the bottom half of the ring will be in the shadow cast by the top half of the ring. On other days of the year, the Sun passes to the north or south of the ring, and will illuminate the bottom half. For latitudes away from the equator, the ring merely needs to be placed at the correct angle in the equatorial plane. At the Earth's poles, the ring would be horizontal.

The equatorial ring was about one to two cubits (45cm-90cm) in diameter. Because the Sun is not a point source of light, the width of the shadow on the bottom half of the ring is slightly less than the width of the ring. By waiting until the shadow was centered on the ring, the time of the equinox could be fixed to within an hour or so. If the equinox happened at night, or if the sky was cloudy, an interpolation could be made between two days' measurements.

The main disadvantage with the equatorial ring is that it needed to be aligned very precisely or false measurements could occur. Ptolemy mentions in the Almagest that one of the equatorial rings in use in Alexandria had shifted slightly, which meant that the instrument showed the equinox occurring twice on the same day. False readings can also be produced by atmospheric refraction of the Sun when it is close to the horizon.

Equatorial rings can also be found on armillary spheres and equatorial sundials.

References

  • Anton Pannekoek, (1989), A History of Astronomy, page 124. Courier Dover Publications
  • James Evans, (1998), The History and Practice of Ancient Astronomy, pages 206-7. Oxford University Press.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.