"Energetic" redirects here. For other uses, see Energetic (disambiguation).
In physics, energy is one of the basic quantitative properties describing a physical system or object's state. Energy can be transformed (converted) among a number of forms that may each manifest and be measurable in differing ways. The law of conservation of energy states that the (total) energy of a system can increase or decrease only by transferring it in or out of the system. The total energy of a system can be calculated by simple addition when it is composed of multiple noninteracting parts or has multiple distinct forms of energy. Common energy forms include the kinetic energy of a moving object, the radiant energy carried by light and other electromagnetic radiation, and various types of potential energy such as gravitational and elastic. Energy is measured in SI units of joules (J). Common types of energy transfer and transformation include processes such as heating a material, performing mechanical work on an object, generating or making use of electric energy, and many chemical reactions.
Units of measurement for energy are usually defined via a work process. The work performed by a given body on another is defined in physics as the force (SI unit: newton) applied by the given body, multiplied by the distance (SI unit: metre) of movement against the opposing force exerted by the other body. Thus, the energy unit is the newtonmetre, which is called the joule. The SI unit of power (energy per unit time) is the watt, which is simply a joule per second. Thus, a joule is a wattsecond, so 3600 joules equal a watthour. The CGS energy unit is the erg, and the imperial and US customary unit is the foot pound. Other energy units such as the electron volt, food calorie or thermodynamic kcal (based on the temperature change of water in a heating process), and BTU are used in specific areas of science and commerce and have unit conversion factors relating them to the joule.
Potential energy is energy stored by virtue of the position of an object in a force field, such as a gravitational, electric or magnetic field. For example, lifting an object against gravity performs work on the object and stores gravitational potential energy; if it falls, gravity does work on the object which transforms the potential energy to kinetic energy associated with its speed. Some specific forms of energy include elastic energy due to the stretching or deformation of solid objects, chemical energy such as is released when a fuel burns, and thermal energy, the microscopic kinetic and potential energies of the disordered motions of the particles making up matter.
Not all of the energy in a system can be transformed or transferred by a work process; the amount that can is called the available energy. In particular the second law of thermodynamics limits the amount thermal energy that can be transformed into other forms of energy. Mechanical and other forms of energy can be transformed in the other direction into thermal energy without such limitations.
Any object that has mass when stationary (thus called rest mass), equivalently has rest energy as can be calculated using Albert Einstein's equation E = mc^{2}. Being a form of energy, rest energy can be transformed to or from other forms of energy, while the total amount of energy does not change. From this perspective, the amount of matter in the universe contributes to its total energy.
Similarly, all energy manifests as a proportionate amount of mass. For example, adding 25 kilowatthours (90 megajoules) of any form of energy to an object increases its mass by 1 microgram. If you had a sensitive enough mass balance or scale, this mass increase could be measured. Our Sun (or a nuclear bomb) transforms nuclear potential energy to other forms of energy; its total mass doesn't decrease due to that in itself (since it still contains the same total energy even if in different forms), but its mass does decrease when the energy escapes out to its surroundings, largely as radiant energy.
A new form of energy can't be defined arbitrarily. In order to be valid, it must be shown to be transformable to or from a predictable amount of some known form(s) of energy, thus showing how much energy it represents in the same units used for all other forms. It must obey conservation of energy, so it must never decrease or increase except via such a transformation (or transfer). Also, if an alleged new form of energy can be shown not to change the mass of a system in proportion to its energy, then it is not a form of energy.
Living organisms require available energy to stay alive; humans get such energy from food along with the oxygen needed to metabolize it. Civilization requires a supply of energy to function; energy resources such as fossil fuels are a vital topic in economics and politics. Earth's climate and ecosystem are driven by the radiant energy Earth receives from the sun, and are sensitive to changes in the amount received.
Forms of energy
Energy exists in many forms:
History of understanding
The word energy derives from the Greek ἐνέργεια energeia, which possibly appears for the first time in the work of Aristotle in the 4th century BCE. (Ancient Greek: ἐνέργεια energeia “activity, operation”^{[1]})
The concept of energy emerged from the idea of vis viva (living force), which Gottfried Leibniz defined as the product of the mass of an object and its velocity squared; he believed that total vis viva was conserved. To account for slowing due to friction, Leibniz theorized that thermal energy consisted of the random motion of the constituent parts of matter, a view shared by Isaac Newton, although it would be more than a century until this was generally accepted.
In 1807, Thomas Young was possibly the first to use the term "energy" instead of vis viva, in its modern sense.^{[2]} GustaveGaspard Coriolis described "kinetic energy" in 1829 in its modern sense, and in 1853, William Rankine coined the term "potential energy".
The law of conservation of energy, was first postulated in the early 19th century, and applies to any isolated system. According to Noether's theorem, the conservation of energy is a consequence of the fact that the laws of physics do not change over time.^{[3]} Since 1918 it has been known that the law of conservation of energy is the direct mathematical consequence of the translational symmetry of the quantity conjugate to energy, namely time.
It was argued for some years whether energy was a substance (the caloric) or merely a physical quantity, such as momentum.
In 1845 James Prescott Joule discovered the link between mechanical work and the generation of heat. This led to the theory of conservation of energy, and development of the first law of thermodynamics.
Finally, William Thomson (Lord Kelvin) amalgamated these many discoveries into the laws of thermodynamics, which aided the rapid development of explanations of chemical processes by Rudolf Clausius, Josiah Willard Gibbs, and Walther Nernst. It also led to a mathematical formulation of the concept of entropy by Clausius and to the introduction of laws of radiant energy by Jožef Stefan.
During a 1961 lecture^{[4]} for undergraduate students at the California Institute of Technology, Richard Feynman, a celebrated physics teacher and Nobel Laureate, said this about the concept of energy:
There is a fact, or if you wish, a law, governing all natural phenomena that are known to date. There is no known exception to this law—it is exact so far as we know. The law is called the conservation of energy. It states that there is a certain quantity, which we call energy, that does not change in manifold changes which nature undergoes. That is a most abstract idea, because it is a mathematical principle; it says that there is a numerical quantity which does not change when something happens. It is not a description of a mechanism, or anything concrete; it is just a strange fact that we can calculate some number and when we finish watching nature go through her tricks and calculate the number again, it is the same.—The Feynman Lectures on Physics
Units of measure
Energy, like mass, is a scalar physical quantity. The joule is the International System of Units (SI) unit of measurement for energy. It is a derived unit of energy, work, or amount of heat. It is equal to the energy expended (or work done) in applying a force of one newton through a distance of one metre. However energy is also expressed in many other units such as ergs, calories, British Thermal Units, kilowatthours and kilocalories for instance. There is always a conversion factor for these to the SI unit; for instance; one kWh is equivalent to 3.6 million joules.^{[5]}
Energy in various contexts
Classical mechanics
Work, a form of energy, is force times distance.
 $W\; =\; \backslash int\_C\; \backslash mathbf\{F\}\; \backslash cdot\; \backslash mathrm\{d\}\; \backslash mathbf\{s\}$
This says that the work ($W$) is equal to the line integral of the force F along a path C; for details see the mechanical work article.
Work and thus energy is frame dependent. For example, consider a ball being hit by a bat. In the centerofmass reference frame, the bat does no work on the ball. But, in the reference frame of the person swinging the bat, considerable work is done on the ball.
Chemistry
In the context of chemistry, energy is an attribute of a substance as a consequence of its atomic, molecular or aggregate structure. Since a chemical transformation is accompanied by a change in one or more of these kinds of structure, it is invariably accompanied by an increase or decrease of energy of the substances involved. Some energy is transferred between the surroundings and the reactants of the reaction in the form of heat or light; thus the products of a reaction may have more or less energy than the reactants. A reaction is said to be exergonic if the final state is lower on the energy scale than the initial state; in the case of endergonic reactions the situation is the reverse. Chemical reactions are invariably not possible unless the reactants surmount an energy barrier known as the activation energy. The speed of a chemical reaction (at given temperature T) is related to the activation energy E, by the Boltzmann's population factor e^{−E/kT} – that is the probability of molecule to have energy greater than or equal to E at the given temperature T. This exponential dependence of a reaction rate on temperature is known as the Arrhenius equation.The activation energy necessary for a chemical reaction can be in the form of thermal energy.
Biology
In biology, energy is an attribute of all biological systems from the biosphere to the smallest living organism. Within an organism it is responsible for growth and development of a biological cell or an organelle of a biological organism. Energy is thus often said to be stored by cells in the structures of molecules of substances such as carbohydrates (including sugars), lipids, and proteins, which release energy when reacted with oxygen in respiration. In human terms, the human equivalent (He) (Human energy conversion) indicates, for a given amount of energy expenditure, the relative quantity of energy needed for human metabolism, assuming an average human energy expenditure of 12,500kJ per day and a basal metabolic rate of 80 watts. For example, if our bodies run (on average) at 80 watts, then a light bulb running at 100 watts is running at 1.25 human equivalents (100 ÷ 80) i.e. 1.25 He. For a difficult task of only a few seconds' duration, a person can put out thousands of watts, many times the 746 watts in one official horsepower. For tasks lasting a few minutes, a fit human can generate perhaps 1,000 watts. For an activity that must be sustained for an hour, output drops to around 300; for an activity kept up all day, 150 watts is about the maximum.^{[6]} The human equivalent assists understanding of energy flows in physical and biological systems by expressing energy units in human terms: it provides a “feel” for the use of a given amount of energy^{[7]}
Earth sciences
In geology, continental drift, mountain ranges, volcanoes, and earthquakes are phenomena that can be explained in terms of energy transformations in the Earth's interior.,^{[8]} while meteorological phenomena like wind, rain, hail, snow, lightning, tornadoes and hurricanes, are all a result of energy transformations brought about by solar energy on the atmosphere of the planet Earth.
Cosmology
In cosmology and astronomy the phenomena of stars, nova, supernova, quasars and gamma ray bursts are the universe's highestoutput energy transformations of matter. All stellar phenomena (including solar activity) are driven by various kinds of energy transformations. Energy in such transformations is either from gravitational collapse of matter (usually molecular hydrogen) into various classes of astronomical objects (stars, black holes, etc.), or from nuclear fusion (of lighter elements, primarily hydrogen).
Energy and life
Any living organism relies on an external source of energy—radiation from the Sun in the case of green plants; chemical energy in some form in the case of animals—to be able to grow and reproduce. The daily 1500–2000 Calories (6–8 MJ) recommended for a human adult are taken as a combination of oxygen and food molecules, the latter mostly carbohydrates and fats, of which glucose (C_{6}H_{12}O_{6}) and stearin (C_{57}H_{110}O_{6}) are convenient examples. The food molecules are oxidised to carbon dioxide and water in the mitochondria
 C_{6}H_{12}O_{6} + 6O_{2} → 6CO_{2} + 6H_{2}O
 C_{57}H_{110}O_{6} + 81.5O_{2} → 57CO_{2} + 55H_{2}O
and some of the energy is used to convert ADP into ATP
 ADP + HPO_{4}^{2−} → ATP + H_{2}O
The rest of the chemical energy in the carbohydrate or fat is converted into heat: the ATP is used as a sort of "energy currency", and some of the chemical energy it contains when split and reacted with water, is used for other metabolism (at each stage of a metabolic pathway, some chemical energy is converted into heat). Only a tiny fraction of the original chemical energy is used for work:^{[9]}
 gain in kinetic energy of a sprinter during a 100 m race: 4 kJ
 gain in gravitational potential energy of a 150 kg weight lifted through 2 metres: 3kJ
 Daily food intake of a normal adult: 6–8 MJ
It would appear that living organisms are remarkably inefficient (in the physical sense) in their use of the energy they receive (chemical energy or radiation), and it is true that most real machines manage higher efficiencies. In growing organisms the energy that is converted to heat serves a vital purpose, as it allows the organism tissue to be highly ordered with regard to the molecules it is built from. The second law of thermodynamics states that energy (and matter) tends to become more evenly spread out across the universe: to concentrate energy (or matter) in one specific place, it is necessary to spread out a greater amount of energy (as heat) across the remainder of the universe ("the surroundings").^{[10]} Simpler organisms can achieve higher energy efficiencies than more complex ones, but the complex organisms can occupy ecological niches that are not available to their simpler brethren. The conversion of a portion of the chemical energy to heat at each step in a metabolic pathway is the physical reason behind the pyramid of biomass observed in ecology: to take just the first step in the food chain, of the estimated 124.7 Pg/a of carbon that is fixed by photosynthesis, 64.3 Pg/a (52%) are used for the metabolism of green plants,^{[11]} i.e. reconverted into carbon dioxide and heat.
Energy transformation
The concept of energy and its transformations is vital in explaining and predicting most natural phenomena. One form of energy can often be readily transformed into another; for instance, a battery, from chemical energy to electric energy; a dam: gravitational potential energy to kinetic energy of moving water (and the blades of a turbine) and ultimately to electric energy through an electric generator.
There are strict limits to how efficiently energy can be converted into other forms of energy via work, and heat as described by Carnot's theorem and the second law of thermodynamics. These limits are especially evident when an engine is used to perform work. Some energy transformations can be quite efficient.
The direction of transformations in energy (what kind of energy is transformed to what other kind) is often described by entropy (equal energy spread among all available degrees of freedom) considerations, as in practice all energy transformations are permitted on a small scale, but certain larger transformations are not permitted because it is statistically unlikely that energy or matter will randomly move into more concentrated forms or smaller spaces.
Energy transformations in the universe over time are characterized by various kinds of potential energy that has been available since the Big Bang, later being "released" (transformed to more active types of energy such as kinetic or radiant energy), when a triggering mechanism is available. Familiar examples of such processes include nuclear decay, in which energy is released that was originally "stored" in heavy isotopes (such as uranium and thorium), by nucleosynthesis, a process ultimately using the gravitational potential energy released from the gravitational collapse of supernovae, to store energy in the creation of these heavy elements before they were incorporated into the solar system and the Earth. This energy is triggered and released in nuclear fission bombs or in civil nuclear power generation.
Similarly, in the case of a chemical explosion, chemical potential energy is transformed to kinetic energy and thermal energy in a very short time. Yet another example is that of a pendulum. At its highest points the kinetic energy is zero and the gravitational potential energy is at maximum. At its lowest point the kinetic energy is at maximum and is equal to the decrease of potential energy. If one (unrealistically) assumes that there is no friction or other losses, the conversion of energy between these processes would be perfect, and the pendulum would continue swinging forever.
Conservation of energy and mass in transformation
Energy gives rise to weight when it is trapped in a system with zero momentum, where it can be weighed. It is also equivalent to mass, and this mass is always associated with it. Mass is also equivalent to a certain amount of energy, and likewise always appears associated with it, as described in massenergy equivalence. The formula E = mc², derived by Albert Einstein (1905) quantifies the relationship between restmass and restenergy within the concept of special relativity. In different theoretical frameworks, similar formulas were derived by J. J. Thomson (1881), Henri Poincaré (1900), Friedrich Hasenöhrl (1904) and others (see Massenergy equivalence#History for further information).
Matter may be converted to energy (and vice versa), but mass cannot ever be destroyed; rather, mass/energy equivalence remains a constant for both the matter and the energy, during any process when they are converted into each other. However, since $c^2$ is extremely large relative to ordinary human scales, the conversion of ordinary amount of matter (for example, 1 kg) to other forms of energy (such as heat, light, and other radiation) can liberate tremendous amounts of energy (~$9\backslash times\; 10^\{16\}$ joules = 21 megatons of TNT), as can be seen in nuclear reactors and nuclear weapons. Conversely, the mass equivalent of a unit of energy is minuscule, which is why a loss of energy (loss of mass) from most systems is difficult to measure by weight, unless the energy loss is very large. Examples of energy transformation into matter (i.e., kinetic energy into particles with rest mass) are found in highenergy nuclear physics.
Reversible and nonreversible transformations
Transformation of energy into useful work is a core topic of thermodynamics. In nature, transformations of energy can be fundamentally classed into two kinds: those that are thermodynamically reversible, and those that are thermodynamically irreversible. A reversible process in thermodynamics is one in which no energy is dissipated (spread) into empty energy states available in a volume, from which it cannot be recovered into more concentrated forms (fewer quantum states), without degradation of even more energy. A reversible process is one in which this sort of dissipation does not happen. For example, conversion of energy from one type of potential field to another, is reversible, as in the pendulum system described above. In processes where heat is generated, quantum states of lower energy, present as possible excitations in fields between atoms, act as a reservoir for part of the energy, from which it cannot be recovered, in order to be converted with 100% efficiency into other forms of energy. In this case, the energy must partly stay as heat, and cannot be completely recovered as usable energy, except at the price of an increase in some other kind of heatlike increase in disorder in quantum states, in the universe (such as an expansion of matter, or a randomization in a crystal).
Transformation with the age of the universe
As the universe evolves in time, more and more of its energy becomes trapped in irreversible states (i.e., as heat or other kinds of increases in disorder). This has been referred to as the inevitable thermodynamic heat death of the universe. In this heat death the energy of the universe does not change, but the fraction of energy which is available to do work through a heat engine, or be transformed to other usable forms of energy (through the use of generators attached to heat engines), grows less and less.
In a slower process, radioactive decay of these atoms in the core of the Earth releases heat. This thermal energy drives plate tectonics and may lift mountains, via orogenesis. This slow lifting represents a kind of gravitational potential energy storage of the thermal energy, which may be later released to active kinetic energy in landslides, after a triggering event. Earthquakes also release stored elastic potential energy in rocks, a store that has been produced ultimately from the same radioactive heat sources. Thus, according to present understanding, familiar events such as landslides and earthquakes release energy that has been stored as potential energy in the Earth's gravitational field or elastic strain (mechanical potential energy) in rocks. Prior to this, they represent release of energy that has been stored in heavy atoms since the collapse of longdestroyed supernova stars created these atoms.
In another similar chain of transformations beginning at the dawn of the universe, nuclear fusion of hydrogen in the Sun also releases another store of potential energy which was created at the time of the Big Bang. At that time, according to theory, space expanded and the universe cooled too rapidly for hydrogen to completely fuse into heavier elements. This meant that hydrogen represents a store of potential energy that can be released by fusion. Such a fusion process is triggered by heat and pressure generated from gravitational collapse of hydrogen clouds when they produce stars, and some of the fusion energy is then transformed into sunlight. Such sunlight from our Sun may again be stored as gravitational potential energy after it strikes the Earth, as (for example) water evaporates from oceans and is deposited upon mountains (where, after being released at a hydroelectric dam, it can be used to drive turbines or generators to produce electricity). Sunlight also drives many weather phenomena, save those generated by volcanic events.
An example of a solarmediated weather event is a hurricane, which occurs when large unstable areas of warm ocean, heated over months, give up some of their thermal energy suddenly to power a few days of violent air movement. Sunlight is also captured by plants as chemical potential energy in photosynthesis, when carbon dioxide and water (two lowenergy compounds) are converted into the highenergy compounds carbohydrates, lipids, and proteins. Plants also release oxygen during photosynthesis, which is utilized by living organisms as an electron acceptor, to release the energy of carbohydrates, lipids, and proteins. Release of the energy stored during photosynthesis as heat or light may be triggered suddenly by a spark, in a forest fire, or it may be made available more slowly for animal or human metabolism, when these molecules are ingested, and catabolism is triggered by enzyme action.
Through all of these transformation chains, potential energy stored at the time of the Big Bang is later released by intermediate events, sometimes being stored in a number of ways over time between releases, as more active energy. In all these events, one kind of energy is converted to other types of energy, including heat.
Conservation of energy
Energy is subject to the law of conservation of energy. According to this law, energy can neither be created (produced) nor destroyed by itself. It can only be transformed.
Most kinds of energy (with gravitational energy being a notable exception)^{[12]} are subject to strict local conservation laws as well. In this case, energy can only be exchanged between adjacent regions of space, and all observers agree as to the volumetric density of energy in any given space. There is also a global law of conservation of energy, stating that the total energy of the universe cannot change; this is a corollary of the local law, but not vice versa.^{[4]}^{[13]} Conservation of energy is the mathematical consequence of translational symmetry of time (that is, the indistinguishability of time intervals taken at different time)^{[14]}  see Noether's theorem.
According to Conservation of energy the total inflow of energy into a system must equal the total outflow of energy from the system, plus the change in the energy contained within the system.
This law is a fundamental principle of physics. It follows from the translational symmetry of time, a property of most phenomena below the cosmic scale that makes them independent of their locations on the time coordinate. Put differently, yesterday, today, and tomorrow are physically indistinguishable.
This is because energy is the quantity which is canonical conjugate to time. This mathematical entanglement of energy and time also results in the uncertainty principle  it is impossible to define the exact amount of energy during any definite time interval. The uncertainty principle should not be confused with energy conservation  rather it provides mathematical limits to which energy can in principle be defined and measured.
Each of the basic forces of nature is associated with a different type of potential energy, and all types of potential energy (like all other types of energy) appears as system mass, whenever present. For example, a compressed spring will be slightly more massive than before it was compressed. Likewise, whenever energy is transferred between systems by any mechanism, an associated mass is transferred with it.
In quantum mechanics energy is expressed using the Hamiltonian operator. On any time scales, the uncertainty in the energy is by
 $\backslash Delta\; E\; \backslash Delta\; t\; \backslash ge\; \backslash frac\; \{\; \backslash hbar\; \}\; \{2\; \}$
which is similar in form to the Heisenberg uncertainty principle (but not really mathematically equivalent thereto, since H and t are not dynamically conjugate variables, neither in classical nor in quantum mechanics).
In particle physics, this inequality permits a qualitative understanding of virtual particles which carry momentum, exchange by which and with real particles, is responsible for the creation of all known fundamental forces (more accurately known as fundamental interactions). Virtual photons (which are simply lowest quantum mechanical energy state of photons) are also responsible for electrostatic interaction between electric charges (which results in Coulomb law), for spontaneous radiative decay of exited atomic and nuclear states, for the Casimir force, for van der Waals bond forces and some other observable phenomena.
Applications of the concept of energy
Energy is subject to a strict global conservation law; that is, whenever one measures (or calculates) the total energy of a system of particles whose interactions do not depend explicitly on time, it is found that the total energy of the system always remains constant.^{[15]}
 The total energy of a system can be subdivided and classified in various ways. For example, it is sometimes convenient to distinguish potential energy (which is a function of coordinates only) from kinetic energy (which is a function of coordinate time derivatives only). It may also be convenient to distinguish gravitational energy, electric energy, thermal energy, and other forms. These classifications overlap; for instance, thermal energy usually consists partly of kinetic and partly of potential energy.
 The transfer of energy can take various forms; familiar examples include work, heat flow, and advection, as discussed below.
 The word "energy" is also used outside of physics in many ways, which can lead to ambiguity and inconsistency. The vernacular terminology is not consistent with technical terminology. For example, while energy is always conserved (in the sense that the total energy does not change despite energy transformations), energy can be converted into a form, e.g., thermal energy, that cannot be utilized to perform work. When one talks about "conserving energy by driving less," one talks about conserving fossil fuels and preventing useful energy from being lost as heat. This usage of "conserve" differs from that of the law of conservation of energy.^{[13]}
In classical physics energy is considered a scalar quantity, the canonical conjugate to time. In special relativity energy is also a scalar (although not a Lorentz scalar but a time component of the energymomentum 4vector).^{[16]} In other words, energy is invariant with respect to rotations of space, but not invariant with respect to rotations of spacetime (= boosts).
Energy transfer
A system can transfer energy to another system by simply transferring matter to it (since matter is equivalent to energy, in accordance with its mass). However, when energy is transferred by means other than mattertransfer, the transfer produces changes in the second system, as a result of work done on it. This work manifests itself as the effect of force(s) applied through distances within the target system.
For example, a system can emit energy to another by transferring (radiating) electromagnetic energy, but this creates forces upon the particles that absorb the radiation. Similarly, a system may transfer energy to another by physically impacting it, but in that case the energy of motion in an object, called kinetic energy, results in forces acting over distances (new energy) to appear in another object that is struck. Transfer of thermal energy by heat occurs by both of these mechanisms: heat can be transferred by electromagnetic radiation, or by physical contact in which direct particleparticle impacts transfer kinetic energy.
Because energy is strictly conserved and is also locally conserved (wherever it can be defined), it is important to remember that by the definition of energy the transfer of energy between the "system" and adjacent regions is work. A familiar example is mechanical work. In simple cases this is written as the following equation:

if there are no other energytransfer processes involved. Here $E$ is the amount of energy transferred, and $W$ represents the work done on the system.^{[dubious – discuss]}
More generally, the energy transfer can be split into two categories:

where $Q$ represents the heat flow into the system.
There are other ways in which an open system can gain or lose energy. In chemical systems, energy can be added to a system by means of adding substances with different chemical potentials, which potentials are then extracted (both of these process are illustrated by fueling an auto, a system which gains in energy thereby, without addition of either work or heat). Winding a clock would be adding energy to a mechanical system. These terms may be added to the above equation, or they can generally be subsumed into a quantity called "energy addition term $E$" which refers to any type of energy carried over the surface of a control volume or system volume. Examples may be seen above, and many others can be imagined (for example, the kinetic energy of a stream of particles entering a system, or energy from a laser beam adds to system energy, without either being either workdone or heatadded, in the classic senses).

Where E in this general equation represents other additional advected energy terms not covered by work done on a system, or heat added to it.
Energy is also transferred from potential energy ($E\_p$) to kinetic energy ($E\_k$) and then back to potential energy constantly. This is referred to as conservation of energy. In this closed system, energy cannot be created or destroyed; therefore, the initial energy and the final energy will be equal to each other. This can be demonstrated by the following:

The equation can then be simplified further since $E\_p\; =\; mgh$ (mass times acceleration due to gravity times the height) and $E\_k\; =\; \backslash frac\{1\}\{2\}\; mv^2$ (half mass times velocity squared). Then the total amount of energy can be found by adding $E\_p\; +\; E\_k\; =\; E\_\{total\}$.
Energy and the laws of motion
In classical mechanics, energy is a conceptually and mathematically useful property, as it is a conserved quantity. Several formulations of mechanics have been developed using energy as a core concept, as below;
The Hamiltonian
The total energy of a system is sometimes called the Hamiltonian, after William Rowan Hamilton. The classical equations of motion can be written in terms of the Hamiltonian, even for highly complex or abstract systems. These classical equations have remarkably direct analogs in
nonrelativistic quantum mechanics.^{[17]}
The Lagrangian
Another energyrelated concept is called the Lagrangian, after Joseph Louis Lagrange. This is even more fundamental than the Hamiltonian, and can be used to derive the equations of motion. It was invented in the context of classical mechanics, but is generally useful in modern physics. The Lagrangian is defined as the kinetic energy minus the potential energy.
Usually, the Lagrange formalism is mathematically more convenient than the Hamiltonian for nonconservative systems (such as systems with friction).
Noether's Theorem
Noether's (first) theorem (1918) states that any differentiable symmetry of the action of a physical system has a corresponding conservation law.
Noether's theorem has become a fundamental tool of modern theoretical physics and the calculus of variations. A generalization of the seminal formulations on constants of motion in Lagrangian and Hamiltonian mechanics (1788 and 1833, respectively), it does not apply to systems that cannot be modeled with a Lagrangian; for example, dissipative systems with continuous symmetries need not have a corresponding conservation law.
Energy and thermodynamics
Internal energy
Internal energy is the sum of all microscopic forms of energy of a system. It is the energy needed to create the system. It is related to the potential energy, e.g., molecular structure, crystal structure, and other geometric aspects, as well as the motion of the particles, in form of kinetic energy. Thermodynamics is chiefly concerned with changes in internal energy and not its absolute value, which is impossible to determine with thermodynamics alone.^{[18]}
The first law of thermodynamics
The first law of thermodynamics asserts that energy (but not necessarily thermodynamic free energy) is always conserved^{[19]} and that heat flow is a form of energy transfer. For homogeneous systems, with a welldefined temperature and pressure, a commonly used corollary of the first law is that, for a system subject only to pressure forces and heat transfer (e.g., a cylinderfull of gas), the differential change in the internal energy of the system (with a gain in energy signified by a positive quantity) is given as
 $\backslash mathrm\{d\}E\; =\; T\backslash mathrm\{d\}S\; \; P\backslash mathrm\{d\}V\backslash ,$,
where the first term on the right is the heat transferred into the system, expressed in terms of temperature T and entropy S (in which entropy increases and the change dS is positive when the system is heated), and the last term on the right hand side is identified as work done on the system, where pressure is P and volume V (the negative sign results since compression of the system requires work to be done on it and so the volume change, dV, is negative when work is done on the system).
This equation is highly specific, ignoring all chemical, electrical, nuclear, and gravitational forces, effects such as advection of any form of energy other than heat and pVwork. The general formulation of the first law (i.e., conservation of energy) is valid even in situations in which the system is not homogeneous. For these cases the change in internal energy of a closed system is expressed in a general form by
 $\backslash mathrm\{d\}E=\backslash delta\; Q+\backslash delta\; W$
where $\backslash delta\; Q$ is the heat supplied to the system and $\backslash delta\; W$ is the work applied to the system.
Equipartition of energy
The energy of a mechanical harmonic oscillator (a mass on a spring) is alternatively kinetic and potential. At two points in the oscillation cycle it is entirely kinetic, and alternatively at two other points it is entirely potential. Over the whole cycle, or over many cycles, net energy is thus equally split between kinetic and potential. This is called equipartition principle; total energy of a system with many degrees of freedom is equally split among all available degrees of freedom.
This principle is vitally important to understanding the behavior of a quantity closely related to energy, called entropy. Entropy is a measure of evenness of a distribution of energy between parts of a system. When an isolated system is given more degrees of freedom (i.e., given new available energy states that are the same as existing states), then total energy spreads over all available degrees equally without distinction between "new" and "old" degrees. This mathematical result is called the second law of thermodynamics.
Oscillators, phonons, and photons
 This section possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research may be removed. (August 2009) 
In an ensemble (connected collection) of unsynchronized oscillators, the average energy is spread equally between kinetic and potential types.
In a solid, thermal energy (often referred to loosely as heat content) can be accurately described by an ensemble of thermal phonons that act as mechanical oscillators. In this model, thermal energy is equally kinetic and potential.
In an ideal gas, the interaction potential between particles is essentially the delta function which stores no energy: thus, all of the thermal energy is kinetic.
Because an electric oscillator (LC circuit) is analogous to a mechanical oscillator, its energy must be, on average, equally kinetic and potential. It is entirely arbitrary whether the magnetic energy is considered kinetic and whether the electric energy is considered potential, or vice versa. That is, either the inductor is analogous to the mass while the capacitor is analogous to the spring, or vice versa.
1. By extension of the previous line of thought, in free space the electromagnetic field can be considered an ensemble of oscillators, meaning that radiation energy can be considered equally potential and kinetic. This model is useful, for example, when the electromagnetic Lagrangian is of primary interest and is interpreted in terms of potential and kinetic energy.
2. On the other hand, in the key equation $m^2\; c^4\; =\; E^2\; \; p^2\; c^2$, the contribution $mc^2$ is called the rest energy, and all other contributions to the energy are called kinetic energy. For a particle that has mass, this implies that the kinetic energy is $0.5\; p^2/m$ at speeds much smaller than c, as can be proved by writing $E\; =\; mc^2$ √$(1\; +\; p^2\; m^\{2\}c^\{2\})$ and expanding the square root to lowest order. By this line of reasoning, the energy of a photon is entirely kinetic, because the photon is massless and has no rest energy. This expression is useful, for example, when the energyversusmomentum relationship is of primary interest.
The two analyses are entirely consistent. The electric and magnetic degrees of freedom in item 1 are transverse to the direction of motion, while the speed in item 2 is along the direction of motion. For nonrelativistic particles these two notions of potential versus kinetic energy are numerically equal, so the ambiguity is harmless, but not so for relativistic particles.
Quantum mechanics
In quantum mechanics energy is defined in terms of the energy operator
as a time derivative of the wave function. The Schrödinger equation equates the energy operator to the full energy of a particle or a system. In results can be considered as a definition of measurement of energy in quantum mechanics. The Schrödinger equation describes the space and timedependence of slow changing (nonrelativistic) wave function of quantum systems. The solution of this equation for bound system is discrete (a set of permitted states, each characterized by an energy level) which results in the concept of quanta. In the solution of the Schrödinger equation for any oscillator (vibrator) and for electromagnetic waves in a vacuum, the resulting energy states are related to the frequency by the Planck equation $E\; =\; h\backslash nu$ (where $h$ is the Planck's constant and $\backslash nu$ the frequency). In the case of electromagnetic wave these energy states are called quanta of light or photons.
Relativity
When calculating kinetic energy (work to accelerate a mass from zero speed to some finite speed) relativistically  using Lorentz transformations instead of Newtonian mechanics, Einstein discovered an unexpected byproduct of these calculations to be an energy term which does not vanish at zero speed. He called it rest mass energy  energy which every mass must possess even when being at rest. The amount of energy is directly proportional to the mass of body:
 $E\; =\; m\; c^2$,
where
 m is the mass,
 c is the speed of light in vacuum,
 E is the rest mass energy.
For example, consider electronpositron annihilation, in which the rest mass of individual particles is destroyed, but the inertia equivalent of the system of the two particles (its invariant mass) remains (since all energy is associated with mass), and this inertia and invariant mass is carried off by photons which individually are massless, but as a system retain their mass. This is a reversible process  the inverse process is called pair creation  in which the rest mass of particles is created from energy of two (or more) annihilating photons. In this system the matter (electrons and positrons) is destroyed and changed to nonmatter energy (the photons). However, the total system mass and energy do not change during this interaction.
In general relativity, the stressenergy tensor serves as the source term for the gravitational field, in rough analogy to the way mass serves as the source term in the nonrelativistic Newtonian approximation.^{[16]}
It is not uncommon to hear that energy is "equivalent" to mass. It would be more accurate to state that every energy has an inertia and gravity equivalent, and because mass is a form of energy, then mass too has inertia and gravity associated with it.
Measurement
Because energy is defined as the ability to do work on objects, there is no absolute measure of energy. Only the transition of a system from one state into another can be defined and thus energy is measured in relative terms. The choice of a baseline or zero point is often arbitrary and can be made in whatever way is most convenient for a problem.
For example in the case of measuring the energy deposited by Xrays as shown in the accompanying diagram, conventionally the technique most often employed is calorimetry. This is a thermodynamic technique that relies on the measurement of temperature using a thermometer or of intensity of radiation using a bolometer.
Energy density
Main article:
Energy density
Energy density is a term used for the amount of useful energy stored in a given system or region of space per unit volume.
For fuels, the energy per unit volume is sometimes a useful parameter. In a few applications, comparing, for example, the effectiveness of hydrogen fuel to gasoline it turns out that hydrogen has a higher specific energy than does gasoline, but, even in liquid form, a much lower energy density.
See also
Energy portal 
Physics portal 
Notes and references
Further reading
External links
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.